Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (6): 1734-1740    DOI: 10.11902/1005.4537.2025.050
Current Issue | Archive | Adv Search |
Inhibition Effect of Imidazoline Phosphate on Galvanic Corrosion of 7075 Al-alloy in Neutral NaCl Solution
RUAN Zhibang1, WEI Shixuan1, WANG Shupeng1, LV Zhengping2, LI Gesheng1, LI Yizhou2()
1 School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430070, China
2 College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Cite this article: 

RUAN Zhibang, WEI Shixuan, WANG Shupeng, LV Zhengping, LI Gesheng, LI Yizhou. Inhibition Effect of Imidazoline Phosphate on Galvanic Corrosion of 7075 Al-alloy in Neutral NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1734-1740.

Download:  HTML  PDF(7155KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Herein, the inhibition effect of imidazoline phosphate on the galvanic corrosion of 7075 Al-alloy in 3.5%NaCl solution was investigated by means of electrochemical tests and scanning electron microscopy as well as molecular dynamics simulation. The results indicate that the AlCuFeMn phase within the 7075 Al-alloy can induce micro galvanic corrosion effects, leading to pitting corrosion. When coupled with X70 steel, the galvanic effect significantly accelerates the progression of local corrosion. After the addition of imidazoline phosphate, the 7075 Al-alloy exhibits weak passivation characteristics, regardless of it is coupled with X70 steel or not. Notably, no obvious local corrosion occurs on the surface of the 7075 Al-alloy after immersion, suggesting that imidazoline phosphate exhibits a positive inhibitory effect on the corrosion and galvanic corrosion of the 7075 Al-alloy. Molecular dynamics simulation reveals that the adsorption energy of inhibitor molecular on the surface of Al, Fe, Cu, and Al2O3 is considerably higher than that of corrosive substances such as O2, Cl-, H2O and H3O+. This suggests that a protective film may form on the metal surface, thereby inhibiting the corrosion of Al- alloys.

Key words:  inhibitor      Al-alloy      galvanic corrosion      electrochemical test     
Received:  15 February 2025      32134.14.1005.4537.2025.050
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52471101);National Natural Science Foundation of China(51901217)
Corresponding Authors:  LI Yizhou, E-mail: liyizhou@ouc.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.050     OR     https://www.jcscp.org/EN/Y2025/V45/I6/1734

Fig.1  Molecular structure of SIP
Fig.2  Polarization curves of 7075-T651 Al-alloy immersed for 24 h in 3.5%NaCl solutions without and with 200 mg/L SIP
Fig.3  Polarization curves of 7075-X70 coupling specimen after immersion for 24 h in 3.5%NaCl solutions without and with 200 mg/L SIP
Fig.4  Nyquist diagrams of 7075-T651 Al-alloy (a) and 7075-X70 coupling specimen (b) after immersion for 24 h in 3.5%NaCl solutions without and with 200 mg/L SIP
Fig.5  Equivalent circuit models for fitting Nyquist diagrams of 7075-T651 Al-alloy (a) and 7075-X70 coupled specimen (b) in 3.5%NaCl solutions without and with 200 mg/L SIP
SloutionRs / Ω·cm2Y0Qdl / Ω-1·cm-2·s nnRct / Ω·cm2Rl / Ω·cm2L
Without SIP8.3246.16 × 10-50.851351618.12131
With SIP8.9963.62 × 10-50.86339597777837
Table 1  Fitting parameters of Nyquist diagrams of 7075 Al-alloy immersed for 24 h in 3.5%NaCl solutions without and with 200 mg/L SIP
SloutionRs / Ω·cm2Y0Qf / Ω-1·cm-2·snRf / Ω·cm2Y0Qdl / Ω-1·cm-2·s nnRct / Ω·cm2
Without SIP7.1192.825 × 10-50.8925401.431 × 10-30.99853.3
With SIP6.9282.7 × 10-50.9132414.67 × 10-40.937485
Table 2  Fitting parameters of Nyquist diagrams of 7075-X70 coupling specimen immersed for 24 h in 3.5%NaCl solutions without and with 200 mg/L SIP
Fig.6  Polarization resistances of 7075-T651 Al-alloy and 7075-X70 coupling specimen after immersion for 24 h in 3.5%NaCl solutions without and with 200 mg/L SIP
Fig.7  Micro morphologies of 7075-T651 Al-alloy immersed for 24 h in 3.5%NaCl solutions without (a) and with (b) 200 mg/L SIP
Fig.8  Micro morphologies of 7075-X70 coupling specimen after immersion for 24 h in 3.5%NaCl solutions without (a) and with (b) 200 mg/L SIP
Fig.9  Final adsorption configurations of SIP on Al (a), Al2O3 (b), Fe (c) and Cu (d) in aqueous solution
SurfaceH2OH3O+Cl-O2SIP
Al (111)-13.26-14.44-8.83-24.73-1608.25
Al2O3 (111)-20.36-655.97-16.36-53.89-1717.82
Fe (110)-25.65-26.23-19.29-53.64-2161.25
Cu (111)-14.52-12.85-9.16-27.78-1285.37
Table 3  Adsorption energies Einteraction of SIP on Al, Al2O3, Fe and Cu
[1] Qiao Z, Li Q Q, Liu X H, et al. Effect of nitrate and galvanic couple on crevice corrosion behavior of 7075-T651 Al-alloy in neutral NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1047
(乔 泽, 李清泉, 刘晓航 等. 中性氯化钠溶液中硝酸根和电偶对7075-T651铝合金缝隙腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1047)
[2] Shi L J, Yang X Y, Song Y W, et al. Effect of corrosive media on galvanic corrosion of complicated tri-metallic couples of 2024 Al alloy/Q235 mild steel/304 stainless steel [J]. J. Mater. Sci. Technol., 2019, 35: 1886
[3] Cui T F, Liu D X, Shi P A, et al. Effect of NaCl concentration, pH value and tensile stress on the galvanic corrosion behavior of 5050 aluminum alloy [J]. Mater. Corros., 2016, 67: 72
[4] Xing S H, Li Y, Wharton J A, et al. Effect of dissolved oxygen and coupled resistance on the galvanic corrosion of Cr-Ni low-alloy steel/90-10 cupronickel under simulated deep sea condition [J]. Mater. Corros., 2017, 68: 1123
[5] Zhang G A, Yu N, Yang L Y, et al. Galvanic corrosion behavior of deposit-covered and uncovered carbon steel [J]. Corros. Sci., 2014, 86: 202
[6] Zhu H X, Huang Z Y, Jin G F, et al. Effect of temperature on galvanic corrosion of Al 6061-SS 304 in nitric acid [J]. Energy Rep., 2022, 8(suppl.14): 112
[7] Du G, Lu G Q, Deng L H, et al. Effect of aluminum content on corrosion behavior of Ni-Al alloys in dilute sulfuric acid solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1011
(杜 广, 芦国强, 邓龙辉 等. 铝含量对镍铝合金在稀硫酸溶液中的腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2024, 44: 1011)
[8] Li Y, Tang Y X, Liu X H, et al. Insight into the crevice corrosion mechanism of AA7075-T651 high-strength aluminum alloys in neutral nitrate solution: the effect of Cl- [J]. Mater. Corros., 2024, 75: 1373
[9] Zheng X Z, Castaneda H, Gao H J, et al. Synergistic effects of corrosion and slow strain rate loading on the mechanical and electrochemical response of an aluminium alloy [J]. Corros. Sci., 2019, 153: 53
[10] Wang L W, Liang J M, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl- [J]. Corros. Sci., 2021, 178: 109076
[11] Zhang F, Nilsson J O, Pan J S. In situ and operando AFM and EIS studies of anodization of Al 6060: Influence of intermetallic particles [J]. J. Electrochem. Soc., 2016, 163: C609
[12] Wang Q L, Li H J. Study on anodic oxidation of 2099 aluminum lithium alloy and sealing treatment in environmental friendly solutions [J]. Int. J. Electrochem. Sci., 2023, 18: 100186
[13] Williams G, Coleman A J, Neil McMurray H. Inhibition of aluminium alloy AA2024-T3 pitting corrosion by copper complexing compounds [J]. Electrochim. Acta, 2010, 55: 5947
[14] Zhang S, Zhang T, He Y T, et al. Long-term atmospheric pre-corrosion fatigue properties of epoxy primer-coated 7075-T6 aluminum alloy structures [J]. Int. J. Fatigue, 2019, 129: 105225
[15] Wysocka J, Cieslik M, Krakowiak S, et al. Carboxylic acids as efficient corrosion inhibitors of aluminium alloys in alkaline media [J]. Electrochim. Acta, 2018, 289: 175
[16] Wysocka J, Krakowiak S, Ryl J. Evaluation of citric acid corrosion inhibition efficiency and passivation kinetics for aluminium alloys in alkaline media by means of dynamic impedance monitoring [J]. Electrochim. Acta, 2017, 258: 1463
[17] Cheng X Y, Ye H, Guo C H, et al. Molecular dynamics simulation of diffusion behavior of benzotriazole and sodium benzoate in volatile corrosion inhibitor film [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1323
(程学雨, 叶 桓, 郭程皓 等. 苯骈三氮唑与苯甲酸钠在气相防锈膜中扩散机理的分子动力学模拟研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1323)
[18] Shi C J, Lei R, Deng S D, et al. Corrosion inhibition of Erigeron canadensis L. extract for steel in HCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1189
(石成杰, 雷 然, 邓书端 等. 小蓬草提取物对钢在HCl介质中的缓蚀作用 [J]. 中国腐蚀与防护学报, 2024, 44: 1189)
[19] Liu X H, Li Y Z, Lei L, et al. The effect of nitrate on the corrosion behavior of 7075-T651 aluminum alloy in the acidic NaCl solution [J]. Mater. Corros., 2021, 72: 1478
[20] Zhang W Y, Zhang D Q, Li X H, et al. Excellent performance of dodecyl dimethyl betaine and calcium gluconate as hybrid corrosion inhibitors for Al alloy in alkaline solution [J]. Corros. Sci., 2022, 207: 110556
[21] Liu J, Wang D P, Gao L X, et al. Synergism between cerium nitrate and sodium dodecylbenzenesulfonate on corrosion of AA5052 aluminium alloy in 3wt.%NaCl solution [J]. Appl. Surf. Sci., 2016, 389: 369
[22] Tian W M, Li S M, Wang B, et al. Pitting corrosion of naturally aged AA7075 aluminum alloys with bimodal grain size [J]. Corros. Sci., 2016, 113: 1
[23] Wang S J, Cao Y M, Liu X H, et al. In situ electrochemical monitoring of the crevice corrosion process of the 7075-T651 aluminium alloy in acidic NaCl and NaNO3 solution [J]. Materials, 2023, 16: 2812
[24] Zhang Q H, Hou B S, Zhang G A. Inhibitive and adsorption behavior of thiadiazole derivatives on carbon steel corrosion in CO2-saturated oilfield produced water: Effect of substituent group on efficiency [J]. J. Colloid Interface Sci., 2020, 572: 91
[25] Zhao H X, Zhang X H, Ji L, et al. Quantitative structure-activity relationship model for amino acids as corrosion inhibitors based on the support vector machine and molecular design [J]. Corros. Sci., 2014, 83: 261
[1] CHEN Yu, WEI Gaofei, DENG Shuduan, LI Xianghong. Research Progress and Prospects of Carbon Dots as Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2025, 45(6): 1474-1492.
[2] WANG De, ZHANG Fan, WANG Xingqi, ZHANG Hexin, ZHAO Chengzhi, YANG Yange. Long-term Corrosion Resistance of Carbon Steel and Al-alloy with Single Component Fluorocarbon Modified Epoxy Coating[J]. 中国腐蚀与防护学报, 2025, 45(6): 1549-1562.
[3] WU Chunsheng, ZHANG Tianyong, LI Bin, YUAN Wenying, ZHANG Xiaoou, JIANG Shuang, WANG Huaiyuan. Corrosion Inhibition Performance of Triazine-derived Quaternary Ammonium Salts for Q235 Carbon Steel in High Temperature and High Pressure CO2 Containing 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(6): 1639-1648.
[4] LI Zanlong, YAN Qing, MAN Cheng. Effect of Pressure Load and Friction Frequency on Wear Corrosion Behavior of 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(6): 1669-1678.
[5] HUANG Zebang, LIU Guangming, FAN Wenxue, XU Ruizhong, ZHU Yanbin, LIU Chenhui. Effect of Passivation Time on Corrosion Resistance of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(6): 1741-1747.
[6] WANG Haiyang, LIN Chuanhongxin, GUO Liya. Micro-galvanic Corrosion Behavior of Paramagnetic La-Fe-Si Magnetocaloric Alloy Under Parallel Magnetic Fields[J]. 中国腐蚀与防护学报, 2025, 45(6): 1748-1754.
[7] XIA Da-Hai, PAN Chengcheng, GUO Yujie, HU Wenbin, TRIBOLLET Bernard. Electrochemical Impedance Spectroscopy Analysis on Interface State and Corrosion Mechanism of 7050 Al-alloy Subjected to Cavitation Erosion in NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(5): 1196-1204.
[8] CAI Ketao, JI Lei, ZHANG Zhen, FENG Qiang, DENG Weilin, LAN Guihong, HE Sha, ZHAO Zhanyong, BAI Peikang. Corrosion Behavior of Mg-Gd-Y-Zn-Zr Alloy in NaCl and Na2SO4 Solutions[J]. 中国腐蚀与防护学报, 2025, 45(5): 1289-1299.
[9] GU Songlun, ZHANG Fan, HUANG Guosheng, JIANG Dan, DONG Guojun. Corrosion Behavior of Cold Spray Cu-Ti Pseudo Alloy as Anti-fouling Material in Natural Seawater[J]. 中国腐蚀与防护学报, 2025, 45(5): 1309-1319.
[10] LI Ping, SHI Huijie, PEI Jibin, WANG Zijian, CAO Tieshan, CHENG Congqian, ZHAO Jie. Impact of Nanosecond Pulsed Laser Irradiation on Electrochemical Corrosion Behavior of 17-4PH Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(5): 1417-1424.
[11] FANG Huanjie, ZHOU Peng, YU Jianhao, WANG Yongxin, YU Bo, PU Jibin. Galvanic Corrosion Behavior of Coupling Pairs of Ti80 Alloy with Various Marine Metallic Materials[J]. 中国腐蚀与防护学报, 2025, 45(4): 905-915.
[12] ZHAI Yaru, XIONG Jinping, ZHAO Jingmao. Corrosion Inhibition Performance of Nitrobarbituric Acid on Mg-alloys AZ31B and AZ91D in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(4): 916-926.
[13] LEI Tao, CHEN Shaogao, LIU Xiuli, FAN Jinlong, ZHENG Xingwen. Corrosion Behavior of Laser Additive Manufacturing AlSi10Mg Al-alloy in Ethylene Glycol Coolant and Detection of Coolant Degradation[J]. 中国腐蚀与防护学报, 2025, 45(4): 1014-1024.
[14] DING Zhichao, ZHANG Shuguo, XIAO Xiaochun, WANG Di, LI Wenjie, JIANG Lihong. Intergranular Corrosion Behavior of Friction Stir Welded Joints of Semi-solid 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 1089-1097.
[15] SONG Xiaowen, BAI Miaomiao, CHEN Nana, GAO Yihui, FENG Yali, LIU Qianqian, ZHANG Yaoyao, LU Lin, WU Junsheng, XIAO Kui. Effect of Aspergillus Aculeatus on Corrosion Behavior of 5A02 Al-alloy in Coastal Atmospheric Environment of Hainan Island[J]. 中国腐蚀与防护学报, 2025, 45(3): 631-642.
No Suggested Reading articles found!