Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1320-1330    DOI: 10.11902/1005.4537.2024.363
Current Issue | Archive | Adv Search |
Pipeline Corrosion Prediction Method Based on Physics-informed Neural Networks
ZHOU Taotao1,2,3, LIU Yingzheng1,2,3(), ZHENG Wenpei1,2,3, JIANG Hengliang4, LIU Haipeng4, XIA Gang4
1 College of Safety and Ocean Engineering, China University of Petroleum (Beijing), Beijing 102249, China
2 Key Laboratory of Oil and Gas Safety and Emergency Technology, Ministry of Emergency Management, Beijing 102249, China
3 Key Laboratory of Oil and Gas Production Equipment Quality Inspection and Health Diagnosis, State Administration for Market Regulation, Beijing 102249, China
4 China National Oil and Gas Exploration and Development Corporation Limited, Beijing 102100, China
Cite this article: 

ZHOU Taotao, LIU Yingzheng, ZHENG Wenpei, JIANG Hengliang, LIU Haipeng, XIA Gang. Pipeline Corrosion Prediction Method Based on Physics-informed Neural Networks. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1320-1330.

Download:  HTML  PDF(3465KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the increasing oil and gas exploration, the number of service pipelines is growing, making the accurate prediction of internal corrosion crucial for pipeline integrity management. To address the limitations of traditional machine learning methods in interpreting and generalizing corrosion rate predictions, the monotonic relationships between temperature, CO2 partial pressure, and corrosion rate are incorporated into a Physics-Informed Neural Network (PINN). This approach is designed to adhere to mechanistic constraints, avoid overfitting and underfitting, and ensure physical consistency. The PINN model is shown to outperform Support Vector Machines (SVM), Extreme Gradient Boosting (XGBoost), and Artificial Neural Networks (ANN), demonstrating superior accuracy and generalization.

Key words:  internal corrosion      rate prediction      physics-informed neural networks      monotonicity in physics     
Received:  06 November 2024      32134.14.1005.4537.2024.363
ZTFLH:  TE985  
Fund: National Natural Science Foundation of China(72301294);Cooperation Technology Projects of CNPC (China National Petroleum Corporation) and CUPB (China University of Petroleum, Beijing)(ZLZX2020-05);Program for Youth Talents by the China University of Petroleum-Beijing(2462023BJRC016)
Corresponding Authors:  LIU Yingzheng, E-mail: liuyingzheng2024@126.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.363     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1320

LabelsVariableVariable nameUnitRangeAverage
X1TTemperature41.7-69.458.5
X2PSystem pressurePa1.52 × 106-3.23 × 1062.28 × 106
X3pCO2CO2 partial pressurePa2.9 × 104-3.8 × 1043.3 × 104
X4pHpH-4.2-6.25.8
X5VfFluid flow ratem·s-10.37-0.690.53
X6Cl-Cl- concentrationmg·L-13420-82806227
X7CO2 eqCO2 concentrationmg·L-115.8-27.422.7
X8HCO3-HCO3- concentrationmg·L-1107-208150
X9WCWater content%52.5-63.958.6
YVcorrInternal corrosion ratemm·a-12.289-3.1052.681
Table 1  Variables in prediction models of corrosion of pipelines
Fig.1  Framework of corrosion prediction model based on PINN
Fig.2  Comparisons of prediction results of various models

Function

Metric

PINNANNSVMXGBoostDe Waard
RMSE0.13290.34190.20950.24910.7258
MAPE3.81%10.72%5.76%7.37%63.19%
Table 2  Errors of prediction results of various models
Fig.3  Corrosion rate vs. temperature curves obtained for pipelines by SVM (a), XGBoost (b), ANN (c) and PINN (d) models under different CO2 partial presses
Fig.4  Distributions of partial derivatives of prediction points by SVM (a), XGBoost (b), ANN (c) and PINN (d) models with respect to temperature and pCO2
Fig.5  Corrosion rate vs. pCO2 curves obtained for pipelines by SVM (a), XGBoost (b), ANN (c) and PINN (d) at different temperatures
[1] Wasim M, Djukic M B. External corrosion of oil and gas pipelines: A review of failure mechanisms and predictive preventions [J]. J. Nat. Gas Sci. Eng., 2022, 100: 104467
[2] Shuai Y, Wang X H, Cheng Y F. Buckling resistance of an X80 steel pipeline at corrosion defect under bending moment [J]. J. Nat. Gas Sci. Eng., 2021, 93: 104016
[3] El Amine Ben Seghier M, Keshtegar B, Tee K F, et al. Prediction of maximum pitting corrosion depth in oil and gas pipelines [J]. Eng. Fail. Anal., 2020, 112: 104505
[4] Ding J L, Xi X, Zhang D H. Development and outlook of China's pipeline transportation technologies under energy security strategy [J]. Oil Gas Storage Transp., 2022, 41: 632
丁建林, 西 昕, 张对红. 能源安全战略下中国管道输送技术发展与展望 [J]. 油气储运, 2022, 41: 632
[5] Xiang Z H, Gao S H. Efficient management and safe operation of gas pipelines under the background of "Dual Carbon" [J]. Chem. Eng. Manag., 2024, (3): 123
相泽厚, 高胜寒. “双碳”背景下输气管道的高效管理与安全运行 [J]. 化工管理, 2024, (3): 123
[6] Di C Y, Cui G S. Analysis of oil and gas pipeline corrosion causes and influencing factors [J]. Petrochem. Ind. Technol., 2024, 31(7): 69
邸春雨, 崔国森. 浅析油气管道腐蚀原因及影响因素 [J]. 石化技术, 2024, 31(7): 69
[7] Wu F Y, Dai L B, Zhang X Z, et al. Analysis of chemical corrosion mechanism of oil and gas pipelines and its protective measures [J]. Contemp. Chem. Ind., 2024, 53: 1394
吴付洋, 戴立斌, 张学忠 等. 油气管道化学腐蚀机理分析及其防护措施 [J]. 当代化工, 2024, 53: 1394
[8] Zhu H H, Guo H L, Yan S D, et al. Study on bearing capacity of buried pipeline containing corrosion defects under external force [J]. J. Saf. Sci. Technol., 2018, 14(11): 70
朱豪豪, 郭海林, 闫生栋 等. 含腐蚀缺陷埋地管道在外力作用下的承载力研究 [J]. 中国安全生产科学技术, 2018, 14(11): 70
[9] Xie M J, Tian Z G. A review on pipeline integrity management utilizing in-line inspection data [J]. Eng. Fail. Anal., 2018, 92: 222
[10] De Waard C, Milliams D E. Carbonic acid corrosion of steel [J]. Corrosion, 1975, 31(5): 177
[11] De Waard C, Lotz U, Milliams D E. Predictive model for CO2 corrosion engineering in wet natural gas pipelines [J]. Corrosion, 1991, 47: 976
[12] De Waard C, Lotz U. Prediction of CO2 corrosion of carbon steel [A]. Corrosion National Association of Corrosion [C]. Houston, Taxes, 1993
[13] De Waard C, Lotz U, Dugstad A. Influence of liquid flow velocity on CO2 corrosion: a semi-empirical model [R]. Houston: NACE International, 1995
[14] De Waard C, Smith L, Bartlett P, et al. Modelling Corrosion Rates in Oil Production Tubing [M]. Eurocorr: Riva del Garda, 2001, 254
[15] Nesic S, Xiao Y, Pots B F M. A quasi 2-D localized corrosion model [A]. NACE Corrosion [C]. New Orleans, Louisiana, 2004
[16] Nesic S, Wang S H, Cai J Y, et al. Integrated CO2 corrosion-multiphase flow model [A]. SPE International Oilfield Corrosion Conference and Exhibition [C]. Aberdeen, United Kingdom, 2004
[17] Abdar P S, Hariri M B, Kahyarian A, et al. A revision of mechanistic modeling of mild steel corrosion in H2S environments [J]. Electrochim. Acta, 2021, 382: 138231
[18] Ma H N, Zhang W D, Wang Y, et al. Advances in corrosion growth modeling for oil and gas pipelines: a review [J]. Process Saf. Environ. Prot., 2023, 171: 71
[19] Al-Fakih A M, Algamal Z Y, Lee M H, et al. Quantitative structure-activity relationship model for prediction study of corrosion inhibition efficiency using two-stage sparse multiple linear regression [J]. J. Chemom., 2016, 30: 361
[20] Velázquez J C, Caleyo F, Valor A, et al. Predictive model for pitting corrosion in buried oil and gas pipelines [J]. Corrosion, 2009, 65: 332
[21] Ossai C I, Boswell B, Davies I. Markov chain modelling for time evolution of internal pitting corrosion distribution of oil and gas pipelines [J]. Eng. Fail. Anal., 2016, 60: 209
[22] Qin M, Liao K X, He G X, et al. Main control factors and prediction model of flow-accelerated CO2/H2S synergistic corrosion for X65 steel [J]. Process Saf. Environ. Prot., 2022, 160: 749
[23] El-Abbasy M S, Senouci A, Zayed T, et al. Artificial neural network models for predicting condition of offshore oil and gas pipelines [J]. Automat. Construct., 2014, 45: 50
[24] Zhou Y X, Peng X Y, Geng Y H, et al. Internal corrosion rate prediction of shale gas gathering pipeline based on KPCA-GA-BP model [J]. Corros. Prot., 2024, 45(4): 63
周逸轩, 彭星煜, 耿月华 等. 基于KPCA-GA-BP模型的页岩气集输管道的内腐蚀速率预测 [J]. 腐蚀与防护, 2024, 45(4): 63
[25] Liu J H, Tang H G, Fu J, et al. Pipeline corrosion rate prediction based on SSA-SVR model [J]. Hot Work. Technol., 2025, 54(4): 142
刘军衡, 唐海光, 付 军 等. 基于ISSA-SVR模型的管道腐蚀速率预测 [J]. 热加工工艺, 2025, 54(4): 142
[26] Zhou C Y, Zhang Z, Wang Y, et al. Prediction on CO2 corrosion rate of tubing based on neural oblivious decision ensemble [J]. J. Saf. Sci. Technol., 2023, 19(6): 127
周驰宇, 张 智, 王 杨 等. 基于神经遗忘决策集成的油管CO2腐蚀速率预测 [J]. 中国安全生产科学技术, 2023, 19(6): 127
[27] Karpatne A, Atluri G, Faghmous J H, et al. Theory-guided data science: a new paradigm for scientific discovery from data [J]. IEEE Trans. Knowl. Data Eng., 2017, 29: 2318
[28] Azodi C B, Tang J L, Shiu S H. Opening the black box: interpretable machine learning for geneticists [J]. Trends Genet., 2020, 36: 442
doi: S0168-9525(20)30069-X pmid: 32396837
[29] Raissi M, Yazdani A, Karniadakis G E. Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations [J]. Science, 2020, 367: 1026
doi: 10.1126/science.aaw4741 pmid: 32001523
[30] Chen L E, Zeng X Y, Zeng Z H, et al. Temperature prediction of lithium-ion batteries based on physical information and deep neural network [J]. Electr. Power, 2024, 57(11): 18
陈来恩, 曾小勇, 曾子豪 等. 基于物理信息与深度神经网络的锂离子电池温度预测 [J]. 中国电力, 2024, 57(11): 18
[31] Karniadakis G E, Kevrekidis I G, Lu L, et al. Physics-informed machine learning [J]. Nat. Rev. Phys., 2021, 3: 422
doi: 10.1038/s42254-021-00314-5
[32] Zhou T T, Jiang S, Han T, et al. A physically consistent framework for fatigue life prediction using probabilistic physics-informed neural network [J]. Int. J. Fatigue, 2023, 166: 107234
[33] Ren S J, Zhu B Y, Weng Q H, et al. Forecasting method for NO x emission in coal fired boiler based on physics-informed neural network [J]. Proceedings of the CSEE, 2024, 44: 8157
任少君, 朱保宇, 翁琪航 等. 基于物理信息神经网络的燃煤锅炉NO x 排放浓度预测方法 [J]. 中国电机工程学报, 2024, 44: 8157
[34] Deng Z P, Ren S J, Weng Q H, et al. Prediction method for biomass gasification product distribution based on physics-informed neural network [J]. J. Chin. Soc. Power Eng., 2024, 44: 719
邓志平, 任少君, 翁琪航 等. 基于物理信息神经网络的生物质气化产物分布预测方法 [J]. 动力工程学报, 2024, 44: 719
doi: 10.19805/j.cnki.jcspe.2024.240004
[35] Chen Q, Huang W, Zhang C H, et al. Physics-guided prediction of corrosion rate inside gathering and transportation [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 720
陈 潜, 黄 伟, 张昌会 等. 基于物理引导的集输管道内腐蚀速率预测及可解释性分析 [J]. 中国腐蚀与防护学报, 2025, 45: 720
[36] Liu G Y, Zhi S J, Liu X, et al. Research progress on internal corrosion of supercritical/dense-phase CO2 pipelines for CCUS [J]. Oil Gas Storage Transp., 2024, 43: 510
刘广瑜, 支树洁, 柳 歆 等. CCUS超临界/密相CO2管道内腐蚀研究进展 [J]. 油气储运, 2024, 43: 510
[37] Hu L H, Yi H L, Yang W J, et al. Effect of water content on corrosion behavior of X65 pipeline steel in supercritical CO2 fluids [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 576
胡丽华, 衣华磊, 杨维健 等. 水含量对超临界CO2输送管道腐蚀的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 576
doi: 10.11902/1005.4537.2023.227
[38] Song Y Y. Research for internal corrosion rate prediction of submarine oil and gas pipelines in service[D]. Xi'an: Xi'an University of Architecture and Technology, 2020
宋莹莹. 在役海底油气管道内腐蚀速率预测研究 [D]. 西安: 西安建筑科技大学, 2020
[1] CHEN Qian, HUANG Wei, ZHANG Changhui, GUAN Aocheng, ZHANG Chen, YE Xiaopeng. Physics-guided Prediction of Corrosion Rate Inside Gathering and Transportation Pipelines and Explanatory Analysis[J]. 中国腐蚀与防护学报, 2025, 45(3): 720-730.
[2] ZHENG Wenpei, LIU Yingzheng, ZHANG Yaru, ZHOU Taotao, LI Xingtao, YU Shengyang, JIANG Lumeng. An Integrated Corrosion Rate Prediction Model Based on Global and Local Error Fusion: A Robust Optimization Strategy[J]. 中国腐蚀与防护学报, 2025, 45(2): 523-532.
[3] WANG Wenquan, CUI Yu, XUE Yunpeng, LIU Li, WANG Fuhui. Corrosion Behavior of GH4169 Alloy Under Flexural Tensile Stress and Beneath a NaCl Deposit Film in Water Vapor Containing Air at 600oC[J]. 中国腐蚀与防护学报, 2024, 44(6): 1399-1411.
[4] ZHANG Fei, WANG Haitao, HE Yongjun, ZHANG Tiansui, LIU Hongfang. Case Analysis of Microbial Corrosion in Product Oil Pipeline[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
No Suggested Reading articles found!