Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (6): 1399-1411    DOI: 10.11902/1005.4537.2024.002
Current Issue | Archive | Adv Search |
Corrosion Behavior of GH4169 Alloy Under Flexural Tensile Stress and Beneath a NaCl Deposit Film in Water Vapor Containing Air at 600oC
WANG Wenquan1, CUI Yu2(), XUE Yunpeng3, LIU Li1, WANG Fuhui1
1. Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2. Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. AECC Shenyang Liming Aero-engine Co., Ltd., Shenyang 110862, China
Cite this article: 

WANG Wenquan, CUI Yu, XUE Yunpeng, LIU Li, WANG Fuhui. Corrosion Behavior of GH4169 Alloy Under Flexural Tensile Stress and Beneath a NaCl Deposit Film in Water Vapor Containing Air at 600oC. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1399-1411.

Download:  HTML  PDF(34948KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion behavior of high temperature alloy GH4169 under tensile stress while beneath a solid NaCl deposit film was studied in water vapor containing air at 600°C to simulate the service conditions of aircraft engine compressors in the marine environment. The results show that the applied tensile stress accelerates the corrosion of GH4169 in the environment, resulting in the formation of a complex mixture of NiCr2O4, NaNbO3, Fe2O3, NiO, Cr2O3, Al2O3 and NiFe2O4 on the alloy surface. The applied tensile stress could induce active internal corrosion of GH4169. The internal corrosion products were discontinuous granular Cr2O3 and a small amount of Fe2O3 and NbO. After normal heat treatment the GH4169 alloy tends to have non-uniform intergranular corrosion, while the solid-solution heat-treated ones exhibited a relatively uniform internal corrosion zone. The active corrosion process leads to the formation of Cr and Fe depletion regions in the matrix, and the Cr and Fe vacancies in this region lead to the deteriorated stability of Ni-Cr-Fe cells.

Key words:  GH4169      NaCl      internal corrosion      elastic stress     
Received:  02 January 2024      32134.14.1005.4537.2024.002
ZTFLH:  TG174  
Fund: Joint Funds of National Natural Science Foundation of China (Key)(U22A20111)
Corresponding Authors:  CUI Yu, E-mail: ycui@imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.002     OR     https://www.jcscp.org/EN/Y2024/V44/I6/1399

Fig.1  Metallographic structure of GH4169 alloys treated by standard heat treatment (a) and solution heat treatment (b), and grain size statistics (c)
Fig.2  Experimental device diagram: (a) schematic diagram of the simulation device for medium temperature and humid environment[4], (b) schematic diagram of a four-point bending fixture, (c) four-point bending fixture diagram
Fig.3  Stress and strain state calculated by ANSYS simulation: (a) front view of strain state, (b) oblique view of stress state, (c) top view of strain state, (d) oblique view of stress state
Fig.4  Macro surface morphologies of GH4169 alloys treated by standard heat treatment (a-c) and solution heat treatment (d-f), and deposited with NaCl after corrosion in a humid 600oC environment for 20 h under a stress load of 0 MPa (a, d), 600 MPa (b, e) and 800 MPa (c, f)
Fig.5  Surface morphologies of GH4169 alloy treated by standard heat treatment after corrosion in a humid 600oC environment containing solid NaCl for 20 h under a stress load of 0 MPa (a-c), 600 MPa (d-f) and 800 MPa (g-i)
Fig. 6  Surface morphologies of GH4169 alloy treated by solution heat treatment after corrosion in a humid 600oC environment containing solid NaCl for 20 h under a stress load of 0 MPa (a-c), 600 MPa (d-f) and 800 MPa (g-i)
Fig.7  XRD patterns of surface corrosion products of NaCl-deposited GH4169 alloys treated by standard heat treatment (a) and solution heat treatment (b) after corrosion in a humid 600oC environment for 20 h under different stress loads
Fig.8  Cross-sectional morphologies of NaCl-deposited GH4169 alloys treated by standard heat treatment (a-c) and solution heat treatment (d-f) after corrosion in a humid 600oC environment for 20 h under a stress load of 0 MPa (a, d), 600 MPa (b, e) and 800 MPa (c, f)
Fig.9  Internal corrosion morphologies of standard heat-treated GH4169 alloy under a stress load of 0 MPa (a, d), 600 MPa (b, e) and 800 MPa (c, f) after shock polishing: (a-c) backscattered electron image of the internal corrosion morphologies, (d-f) internal corrosion morphologies with high contrast
Fig.10  Cross-sectional morphologies (a, d) and corresponding elemental distribution on the cross-section (b, e) and internal corrosion region (c, f) of GH4169 alloys treated by standard heat treatment (a-c) and solution heat treatment (d-f) after corrosion in a humid 600 °C environment for 20 h under a stress load of 600 MPa
Fig.11  Phase-stability diagram for metal elements-Cl-O at 600oC calculated using HSC Chemistry 5[23]
Fig.12  Ni-Cr-Fe model alloy cells and that with vacancy contained established based on GH4169 alloying element content: (a) original Ni-Cr-Fe cell, (b) a cell containing one Cr vacancy, (c) a cell containing one Fe vacancy, (d) a cell containing two Cr vacancies, (e) a cell containing three Cr vacancies, (f) a cell containing one Cr vacancy and one Fe vacancy
Fig.13  Stability of Ni-Cr-Fe model alloy cells and that with Cr and Fe vacancies: (a) system energy, (b) vacancy formation energy
1 Wang C, Jiang F, Wang F. Corrosion inhibition of 304 stainless steel by nano-sized Ti/silicone coatings in an environment containing NaCl and water vapor at 400-600oC [J]. Oxid. Met., 2004, 62: 1
2 Zahs A, Spiegel M, Grabke H J. Chloridation and oxidation of iron, chromium, nickel and their alloys in chloridizing and oxidizing atmospheres at 400-700oC [J]. Corros. Sci., 2000, 42: 1093
3 Shu Y H, Wang F H, Wu W T. Corrosion behavior of pure Cr with a solid NaCl deposit in O2 plus water vapor [J]. Oxid. Met., 2000, 54: 457
4 Cao M, Liu L, Yu Z F, et al. Studies on the corrosion behavior of Fe-20Cr alloy in NaCl solution spray at 600oC [J]. Corros. Sci., 2018, 133: 165
5 Persdotter A, Sattari M, Larsson E, et al. Oxidation of Fe-2.25Cr-1Mo in presence of KCl(s) at 400oC-crack formation and its influence on oxidation kinetics [J]. Corros. Sci., 2020, 163: 108234
6 Ciszak C, Popa I, Brossard J M, et al. NaCl induced corrosion of Ti-6Al-4V alloy at high temperature [J]. Corros. Sci., 2016, 110: 91
7 Xiong Y M, Zhu S L, Wang F H. Synergistic corrosion behavior of coated Ti60 alloys with NaCl deposit in moist air at elevated temperature [J]. Corros. Sci., 2008, 50: 15
8 Phother-Simon J, Hanif I, Liske J, et al. The influence of a KCl-rich environment on the corrosion attack of 304L: 3D FIB/SEM and TEM investigations [J]. Corros. Sci., 2021, 183: 109315
9 Shu Y H, Wang F H, Wu W T. Synergistic effect of NaCl and water vapor on the corrosion of 1Cr-11Ni-2W-2Mo-V steel at 500-700oC [J]. Oxid. Met., 1999, 51: 97
10 Liu L, Li Y, Zeng C L, et al. Electrochemical impedance spectroscopy (EIS) studies of the corrosion of pure Fe and Cr at 600oC under solid NaCl deposit in water vapor [J]. Electrochim. Acta, 2006, 51: 4736
11 Tang Y B, Liu L, Li Y, et al. The electrochemical corrosion mechanisms of pure Cr with NaCl deposit in water vapor at 600°C [J]. J. Electrochem. Soc., 2011, 158: C237
12 Fan L, Liu L, Cao M, et al. Corrosion behavior of pure Ti under a solid NaCl deposit in a wet oxygen flow at 600oC [J]. Metals, 2016, 6: 72
13 Grabke H J, Reese E, Spiegel M. The effects of chlorides, hydrogen chloride, and sulfur dioxide in the oxidation of steels below deposits [J]. Corros. Sci., 1995, 37: 1023
14 Ciszak C, Abdallah I, Popa I, et al. Degradation mechanism of Ti-6Al-2Sn-4Zr-2Mo-Si alloy exposed to solid NaCl deposit at high temperature [J]. Corros. Sci., 2020, 172: 108611
15 Krupp U, Kane W M, Laird C, et al. Brittle intergranular fracture of a Ni-base superalloy at high temperatures by dynamic embrittlement [J]. Mater. Sci. Eng., 2024, 387-389A: 409
16 Woodford D A. Gas phase embrittlement and time dependent cracking of nickel based superalloys [J]. Energy Mater., 2006, 1: 59
17 Németh A A N, Crudden D J, Armstrong D E J, et al. Environmentally-assisted grain boundary attack as a mechanism of embrittlement in a nickel-based superalloy [J]. Acta Mater., 2017, 126: 361
18 Jiang R, Reed P A S. Critical assessment 21: oxygen-assisted fatigue crack propagation in turbine disc superalloys [J]. Mater. Sci. Technol., 2016, 32: 401
19 Jiang R, Proprentner D, Callisti M, et al. Role of oxygen in enhanced fatigue cracking in a PM Ni-based superalloy: stress assisted grain boundary oxidation or dynamic embrittlment? [J]. Corros. Sci., 2018, 139: 141
20 Stott F H, Wood G C. Internal oxidation [J]. Mater. Sci. Technol., 1988, 4: 1072
21 Evans H E, Li H Y, Bowen P. A mechanism for stress-aided grain boundary oxidation ahead of cracks [J]. Scr. Mater., 2013, 69: 179
22 Evans H E. Stress effects in high temperature oxidation of metals [J]. Int. Mater. Rev., 1995, 40: 1
23 Zhang W D, Cui Y, Liu L, et al. Corrosion behavior of GH4169 alloy in NaCl solution spray environment at 600oC [J]. Acta Metall. Sin., 2023, 59: 1475
(张伟东, 崔 宇, 刘 莉 等. 600℃ NaCl盐雾环境下GH4169合金的腐蚀行为 [J]. 金属学报, 2023, 59: 1475)
doi: 10.11900/0412.1961.2022.00204
24 Mahobia G S, Paulose N, Singh V. Hot corrosion behavior of superalloy IN718 at 550 and 650oC [J]. J. Mater. Eng. Perform., 2013, 22: 2418
25 Pradhan D, Mahobia G S, Chattopadhyay K, et al. Salt induced corrosion behaviour of superalloy IN718 [J]. Mater. Today Proc., 2018, 5: 7047
26 Wolff I M. Precipitation accompanying overheating in nickel-base superalloy [J]. Mater. Charact., 1992, 29: 55
27 Guo X T, Zheng W W, Xiao C B, et al. Evaluation of microstructural degradation in a failed gas turbine blade due to overheating [J]. Eng. Failure Anal., 2019, 103: 308
28 Tong J Y, Yagi K, Zheng Y R, et al. Microstructural degradation and its corresponding mechanical property of wrought superalloy GH4037 caused by very high temperature [J]. J. Alloy. Compd., 2017, 690: 542
29 Cai H W, Chen Q, Chen M S, et al. A novel recrystallization annealing method to cooperatively control the grain size and δ phase content for initial aged GH4169 superalloy forging [J]. Mater. Charact., 2023, 205: 113246
30 Ferreri N C, Vogel S C, Knezevic M. Determining volume fractions of γ, γ′, γ″, δ, and MC-carbide phases in inconel 718 as a function of its processing history using an advanced neutron diffraction procedure [J]. Mater. Sci. Eng., 2020, 781A: 139228
31 Everhart J L. Engineering Properties of Nickel and Nickel Alloys [M]. New York: Springer, 1971
32 Editorial Board of China Aeronautical Materials Handbook. China Aeronautical Materials Handbook [M]. 2nd ed. Beijing: Standards Press of China, 2002: 323
(《中国航空材料手册》编委会. 中国航空材料手册 [M]. 2版. 北京: 中国标准出版社, 2002: 323)
33 Alduchov O A, Eskridge R E, Improved Magnus form approximation of saturation vapor pressure [J]. J. Appl. Meteorol. Climatol., 1996, 35: 601
34 Huang J H. A simple accurate formula for calculating saturation vapor pressure of water and ice [J]. J. Appl. Meteorol. Climatol., 2018, 57: 1265
35 Srivastava G P, Weaire D. The theory of the cohesive energies of solids [J]. Adv. Phys., 1987, 36: 463
36 Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev., 1990, 41B: 7892
37 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
38 Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev., 1976, 13B: 5188
39 Kitaguchi H S, Li H Y, Evans H E, et al. Oxidation ahead of a crack tip in an advanced Ni-based superalloy [J]. Acta Mater., 2013, 61: 1968
40 Yu Z F, Liu L, Liu R, et al. Corrosion behavior of GH4169 alloy under alternating oxidation at 900oC and solution immersion [J]. Materials, 2019, 12: 1503
41 Wang W Q, Yu Z F, Cui Y, et al. Revealing of corrosion behavior of GH4169 under the alternate environment of intermediate temperature NaCl spraying and marine atmosphere [J]. J. Mater. Res. Technol., 2023, 22: 2316
42 Liu L, Li Y, Wang F H. Corrosion behavior of metals or alloys with a solid NaCl deposit in wet oxygen at medium temperature [J]. Sci. China Technol. Sci., 2012, 55: 369
43 Birks N, Meier G H, Pettit F S. Introduction to the High Temperature Oxidation of Metals [M]. 2nd ed. Cambridge: Cambridge University Press, 2006: 16
[1] ZHAN Fuyuan, LIU Xuanyi, HAUNG Shifu, LIU Shuaiqi, XU Yuanyuan, PAN Xigui, HE Hualin, LIU Guangming. Corrosion Behavior of SA210C Steel Beneath Deposit Film of Mixed Salts Na2SO4-NaCl in Air at 600oC[J]. 中国腐蚀与防护学报, 2024, 44(6): 1656-1662.
[2] HU Qi, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Hot Corrosion Behavior of Inconel 718 Without and With Aluminide Coating in Air Beneath a Thin Film of Salt Mixture of Na2SO4 + 5%NaCl[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[3] XU Jiaxin, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Effect of Coating Process Temperatures on Hot Corrosion Behavior Induced by Deposit of Sulfates Salts in Air at 750oC for CVD Aluminized Coatings on K452 Superalloy[J]. 中国腐蚀与防护学报, 2024, 44(3): 612-622.
[4] DENG Zhibin, HU Xiao, LIU Yingyan, YUE Hang, ZHANG Qian, TANG Haiping, LU Rui. Effect of Magnetic Field on Corrosion Behavior of L360 Pipeline Steel and Welded Joints in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[5] SHEN Jubao, CUI Yu, LIU Li, LIU Rui, MENG Fandi, WANG Fuhui. Cyclic Hot Corrosion Behavior of DZ40M and K452 Superalloys Beneath Molten Deposit NaCl[J]. 中国腐蚀与防护学报, 2023, 43(2): 280-288.
[6] LIU Shuyu, GENG Shujiang, MA Yimeng, WANG Jinlong, WANG Fuhui. Corrosion Resistance of K444 Alloy without and with CVD Aluminized Coatings Beneath NaCl Deposit in Air at 750 ℃[J]. 中国腐蚀与防护学报, 2023, 43(2): 321-328.
[7] YANG Yong, ZHANG Qingbao, ZHU Wancheng, LUO Yanlong. Effect of Magnetic Field on Corrosion Behavior of X52 Pipeline Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.
[8] ZHANG Fei, WANG Haitao, HE Yongjun, ZHANG Tiansui, LIU Hongfang. Case Analysis of Microbial Corrosion in Product Oil Pipeline[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[9] LI Rui, CUI Yu, LIU Li, FAN Lei, MENG Fandi, WANG Fuhui. Corrosion Behavior of Ti60 Alloy in Fog of NaCl Solution at 600 ℃[J]. 中国腐蚀与防护学报, 2021, 41(5): 595-601.
[10] Min CAO, Li LIU, Zhongfen YU, Ying LI, Fuhui WANG. Exfoliation Corrosion Behavior of 2A02 Al-alloy in a Simulated Marine Atmospheric Environment[J]. 中国腐蚀与防护学报, 2018, 38(5): 502-510.
[11] Haiyuan WANG, Yinghui WEI, Huayun DU, Baosheng LIU, Chunli GUO, Lifeng HOU. Corrosion Inhibition and Adsorption Behavior of Green Corrosion Inhibitor SDDTC on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2018, 38(1): 62-67.
[12] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[13] Mingming ZHANG,Li XIN,Xueyong DING,Shujiang GENG,Shenglong ZHU,Fuhui WANG. Corrosion Resistance of Alternately Multilayered Coating Ti/TiAlN on Ti-alloy Ti-6Al-4V Beneath a Solid NaCl Film in Atmosphere of Water Vapor and Oxygen at 600 ℃[J]. 中国腐蚀与防护学报, 2017, 37(1): 29-35.
[14] Min ZHU,Yongfeng YUAN,Jun LIU,Lun NIE,Jian ZHOU. Corrosion Behavior of Incoloy825 Alloy in 3.5%NaCl Solution at Different Temperatures[J]. 中国腐蚀与防护学报, 2016, 36(6): 631-636.
[15] Bo YANG,Maodong LI,Guangming LIU,Yuankui WANG,Kangsheng LIU,Wei ZHAI,Jianhang HUANG. Hot Corrosion Behavior of Inconel 625/NiCr Coating Prepared by HOVF[J]. 中国腐蚀与防护学报, 2016, 36(5): 483-488.
No Suggested Reading articles found!