Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1219-1232    DOI: 10.11902/1005.4537.2024.393
Current Issue | Archive | Adv Search |
Oxidation Behavior of Valve Materials Used in Steam Turbine in Supercritical Water Environment
WANG Fenling1, SHANG Limei1, ZHANG Naiqiang2, ZHU Zhongliang2()
1 State Key Laboratory of Clean & Efficient Turbomachinery Power Equipment-High Temperature Materials Research Institute, Dongfang Electric Corporation, Dongfang Turbing Corporation Limited, Deyang 618000, China
2 Key Laboratory of Power Station Energy Transfer, Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China
Cite this article: 

WANG Fenling, SHANG Limei, ZHANG Naiqiang, ZHU Zhongliang. Oxidation Behavior of Valve Materials Used in Steam Turbine in Supercritical Water Environment. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1219-1232.

Download:  HTML  PDF(47991KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The oxidation behavior of F91, nitrided F91 and F92 steels were performed in supercritical water (SCW) at 600-620 ℃/25 MPa. The oxidation kinetics, microstructure and phase composition of the oxide scale were analyzed using an electronic balance, SEM, XRD and XPS. The results show that the oxidation kinetics of F91, nitrided F91 and F92 steels deviate from the parabolic law. The oxide scale formed on the steels were a typical double-layer structure, consisting of an Fe-rich outer layer Fe3O4, Fe2O3, and a Cr-rich inner layer. Furthermore, MoO3, Ni(OH)2 and Cr2O3 were also detected on the surface of the oxide scale. In addition, with the increase of oxidation time and temperature, the oxide scale undergoes severe warping-type peeling. The oxidation and peeling mechanisms of F91, nitrided F91 and F92 steels in supercritical water were also discussed.

Key words:  nitridation      oxidation      supercritical water      oxidation mechanism      oxide film     
Received:  10 December 2024      32134.14.1005.4537.2024.393
ZTFLH:  TK245  
Fund: National Key Research and Development Project of China(2022YFB4100403)
Corresponding Authors:  ZHU Zhongliang, E-mail: zhzl@ncepu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.393     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1219

Fig.1  Weight gains of F91 (a), nitrided F91 (b) and F92 (c) steels during exposure in SCW
Fig.2  SEM surface morphologies of F91 steel oxidized in SCW at 600 ℃ under 25 MPa for 100 h (a, b), 1000 h (c, d) and 3000 h (e, f)
Fig.3  SEM surface morphologies of F91 steel oxidized in SCW at 620 ℃ under 25 MPa for 100 h (a, b), 1000 h (c, d) and 3000 h (e, f)
Fig.4  SEM surface morphologies of nitrided F91 steel oxidized in SCW at 600 ℃ for 100 h (a, b), 1000 h (c, d) and 3000 h (e, f)
Fig.5  SEM surface morphologies of nitrided F91 steel oxidized in SCW at 620 ℃ for 100 h (a, b), 1000 h (c, d) and 3000 h (e, f)
Fig.6  SEM surface morphologies of F92 steel oxidized in SCW at 600 ℃ for 100 h (a, b), 1000 h (c, d) and 3000 h (e, f)
Fig.7  SEM surface morphologies of F92 steel oxidized in SCW at 620 ℃ for 100 h (a, b), 1000 h (c, d) and 3000 h (e, f)
Fig.8  Cross-sectional SEM images of F91 steel oxidized in SCW at 600 ℃ for 100 h (a, b), 1000 h (c, d) and 3000 h (e, f)
Fig.9  Cross-sectional SEM image of F91 steel oxidized in SCW at 620 ℃ for 100 h (a, b), 1000 h (c, d) and 3000 h (e, f)
Fig.10  Depth profiles of various elements in the oxide scales formed on F91 steel after oxidation in SCW at 600 ℃-100 h (a), 600 ℃-1000 h (b), 600 ℃-3000 h (c), 620 ℃-100 h (d), 620 ℃-1000 h (e) and 620 ℃-3000 h (f)
Fig.11  Cross-sectional SEM images of nitrided F91 steel oxidized in SCW at 600 ℃ for 100 h (a, b), 1000 h (c, d) and 3000 h (e, f)
Fig.12  Cross-sectional SEM image of nitrided F91 steel oxidized in SCW at 620 ℃ for 100 h (a, b), 1000 h (c, d) and 3000 h (e, f)
Fig.13  Depth profiles of various elements in the oxide scales formed on nitrided F91 steel after oxidation in SCW at 600 ℃-100 h (a), 600 ℃-1000 h (b), 600 ℃-3000 h (c), 620 ℃-100 h (d), 620 ℃-1000 h (e) and 620 ℃-3000 h (f)
Fig.14  Cross-sectional SEM images of F92 steel oxidized in SCW at 600 ℃ for 100 h (a, b), 1000 h (c, d) and 3000 h (e, f)
Fig.15  Cross-sectional SEM images of F92 steel oxidized in SCW at 620 ℃ for 100 h (a, b), 1000 h (c, d) and 3000 h (e, f)
Fig.16  Depth profiles of various elements in the oxide scales formed on F92 steel after oxidation in SCW at 600 ℃-100 h (a), 600 ℃-1000 h (b), 600 ℃-3000 h (c), 620 ℃-100 h (d), 620 ℃-1000 h (e) and 620 ℃-3000 h (f)
Fig.17  X-ray diffraction patterns of F91 steel (a), nitrided F91 (b) and F92 (c) steels after oxidation in SCW at 600 and 620 ℃ for different time
Fig.18  XPS full spectrum of the oxide scale of F91 steel oxidized in SCW for 3000 h at 600 ℃ (a), and fine peaks of Mo 3d (b), Ni 2p (c), Fe 2p (d), and O 1s (e)
Fig.19  XPS full spectrum of the oxide scale of F91 steel oxidized in SCW for 3000 h at 620 ℃ (a), and fine peaks of Mo 3d (b), Fe 2p (c), and O 1s (d)
Fig.20  XPS full spectrum of the oxide scale of nitrided F91 steel oxidized in SCW for 3000 h at 600 ℃ (a), and fine peaks of Cr 2p (b), Fe 2p (c), Ni 2p (d), and O 1s (e)
Fig.21  XPS full spectrum of the oxide scale of nitrided F91 steel oxidized in SCW for 3000 h at 620 ℃ (a), and fine peaks of Fe 2p (b) and O 1s (c)
Fig.22  XPS full spectrum of the oxide scale of F92 steel oxidized in SCW for 3000 h at 600 ℃ (a), and fine peaks of Mo 3d (b), Fe 2p (c), Cr 2p (d), and O 1s (e)
Fig.23  XPS full spectrum of the oxide scale of F92 steel oxidized in SCW for 3000 h at 620 ℃ (a), and fine peaks of Mo 3d (b), Fe 2p (c), and O 1s (d)
Main peakF91-600 ℃Nitride F91-600 ℃F92-600 ℃F91-620 ℃Nitride F91-620 ℃F92-620 ℃
O 1s530.17530.08529.46529.45529.83529.83
Fe 2p710.49710.76710.18710.36710.65710.5
Mo 3d232.19-232.2232.12-231.86
Ni 2p856.02856.11----
Cr 2p-576.97575.94---
Table1  Binding energies corresponding to XPS characteristic peaks of tested various elements
F91 steel600 ℃-100 h600 ℃-1000 h600 ℃-3000 h620 ℃-100 h620 ℃-1000 h620 ℃-3000 h
Outer layer18.533.952.221.055.759.2
Inner layer16.619.844.619.344.046.6
Total thickness35.153.796.840.399.7105.8
Table 2  Thicknesses of oxide scales formed on F91 steel during oxidation in SCW at different temperatures for different time (μm)
Nitrited F91 steel600 ℃-100 h600 ℃-1000 h600 ℃-3000 h620 ℃-100 h620 ℃-1000 h620 ℃-3000 h
Outer layer13.939.262.919.248.962.5
Inner layer21.347.650.026.451.259.2
Total thickness35.286.8112.945.6100.1121.5
Table 3  Thicknesses of oxide scales formed on nitrided F91 steel during oxidation in SCW under the different conditions of temperature and time
F92 steel600 ℃-100 h600 ℃-1000 h600 ℃-3000 h620 ℃-100 h620 ℃-1000 h620 ℃-3000 h
Outer layer20.543.961.921.256.872.0
Inner layer12.53253.016.448.655.9
Total thickness3375.9114.937.6105.4127.9
Table 4  Thicknesses of oxide scales formed on F92 steel during oxidation in SCW at different temperatures for different time
Fig.24  X-ray diffraction pattern of nitrided F91 steel
[1] Wang B, Huang Y J, Xiong D B, et al. Effect of gas nitriding on oxidation behavior of F92 steel in air at 700 ℃ [J]. Heat Treat. Met., 2022, 47(6): 240
doi: 10.13251/j.issn.0254-6051.2022.06.043
汪 博, 黄一君, 熊定标 等. 气体渗氮对F92钢在700 ℃空气中氧化行为的影响 [J]. 金属热处理, 2022, 47(6): 240
[2] Wang Z J, Sun F H. Milling property of ferrite F92 heat-resistant steel [J]. Mater. Mech. Eng., 2009, 33(5): 90
王志坚, 孙方宏. 新型F92铁素体耐热钢的铣削加工性能 [J]. 机械工程材料, 2009, 33(5): 90
[3] Shen K, Cai W H, Du S M, et al. Effect of shot peening on high-temperature steam oxidation behavior of martensitic heat-resistant steel [J]. Heat Treat. Met., 2021, 46(2): 66
doi: 10.13251/j.issn.0254-6051.2021.02.012
谌 康, 蔡文河, 杜双明 等. 喷丸对马氏体耐热钢高温蒸汽氧化行为的影响 [J]. 金属热处理, 2021, 46(2): 66
[4] Du C L, Hui X T, Yang H Q, et al. Welded joints performance test and research of China-made F92 heat-resistant steel [J]. Boiler Technol., 2009, 40(3): 52
杜春雷, 惠晓涛, 杨惠勤 等. 国产F92耐热钢焊接接头性能试验与研究 [J]. 锅炉技术, 2009, 40(3): 52
[5] Wei X. Studies on heat treatment and welding properties of F91 material for main steam isolation valve [D]. Dalian: Dalian University of Technology, 2016
魏 雪. 主蒸汽隔离阀用F91材料热处理与焊接性能的研究 [D]. 大连: 大连理工大学, 2016
[6] Shi Q Q, Liu J, Yan W, et al. High temperature oxidation behavior of SIMP steel and T91 steel at 800 ℃ [J]. Chin. J. Mater. Res., 2016, 30: 81
石全强, 刘 坚, 严 伟 等. SIMP钢和T91钢在800 ℃的高温氧化行为 [J]. 材料研究学报, 2016, 30: 81
doi: 10.11901/1005.3093.2015.230
[7] Gao W H, Shen Z, Zhang L F. Corrosion behavior of T91 steel in supercritical water [J]. Corros. Prot., 2016, 37: 444
高文华, 沈 朝, 张乐福. T91钢在超临界水环境中的腐蚀性能 [J]. 腐蚀与防护, 2016, 37: 444
[8] Chen Y Z, Liang Z Y, Xu Y M, et al. Research on steam oxidation behavior of T91 ferritic heat-resistant steel after long-term service under variable load conditions of the boiler [J]. Proc. CSEE, 2025, 10: 3912
陈彦泽, 梁志远, 徐一鸣 等. 长期服役T91铁素体耐热钢变负荷工况下蒸汽氧化行为研究 [J]. 中国电机工程学报, 2025, 10: 3912
[9] Shang C G. Creep, oxidation and creep-oxidation interaction behavior and mechanism of P92/G115 steel in near-service environment [D]. Beijing: University of Science and Technology Beijing, 2023
尚晨光. P92/G115钢在近服役环境下的蠕变、氧化及其交互行为与机制 [D]. 北京: 北京科技大学, 2023
[10] Zhu Z L, Xu H, Jiang D F, et al. Influence of temperature on the oxidation behaviour of a ferritic-martensitic steel in supercritical water [J]. Corros. Sci., 2016, 113: 172
[11] Zhong X Y, Wu X Q, Han E H. Effects of exposure temperature and time on corrosion behavior of a ferritic-martensitic steel P92 in aerated supercritical water [J]. Corros. Sci., 2015, 90: 511
[12] Cao Y, Norell M. Role of nitrogen uptake during the oxidation of 304L and 904L austenitic stainless steels [J]. Oxid. Met., 2013, 80: 479
[13] Zhu Z L, Li Y Y, Ma C H, et al. The corrosion behavior of nickel-based alloy Inconel 740 H in supercritical water [J]. Corros. Sci., 2021, 192: 109848
[14] Yuan X H, Li D J, Wang T J, et al. Oxidation behavior of three different Ni-Cr coatings in 630 ℃/25 MPa supercritical water [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 119
袁小虎, 李定骏, 王天剑 等. 超临界水环境中三种Ni-Cr涂层氧化特性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 119
[15] McIntyre N S, Rummery T E, Cook M G, et al. X‐ray photoelectron spectroscopic study of the aqueous oxidation of monel-400 [J]. J. Electrochem. Soc., 1976, 123: 1164
[16] Uhlenbrock S, Scharfschwerdt C, Neumann M, et al. The influence of defects on the Ni 2p and O 1s XPS of NiO [J]. J. Phys.: Condens. Matter, 1992, 4: 7973
[17] Zhu Z L, Xu H, Izhar Khan H, et al. Oxidation behaviour of Nimonic 263 in high-temperature supercritical water [J]. Corros. Eng. Sci. Technol., 2018, 53: 617
[18] Zhu Z L, Ma C H, Li Y Y, et al. Oxidation behavior of nickel-based alloy Inconel617B in supercritical water at 700 ℃ [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 655
朱忠亮, 马辰昊, 李宇旸 等. 镍基合金Inconel617B在700 ℃超临界水环境中的氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 655
doi: 10.11902/1005.4537.2021.145
[19] Wang Y, Liu Y, Tang H P, et al. Oxidation behaviors of porous Haynes 214 alloy at high temperatures [J]. Mater. Charact., 2015, 107: 283
[20] Grünert W, Stakheev A Y, Feldhaus R, et al. Analysis of molybdenum (3d) XPS spectra of supported molybdenum catalysts: an alternative approach [J]. J. Phys. Chem., 1991, 95: 1323
[21] Tan L, Ren X W, Allen T R. Corrosion behavior of 9-12%Cr ferritic-martensitic steels in supercritical water [J]. Corros. Sci., 2010, 52: 1520
[22] Yin K J, Qiu S Y, Tang R, et al. Corrosion behavior of ferritic/martensitic steel P92 in supercritical water [J]. J. Supercrit. Fluids, 2009, 50: 235
[23] Ampornrat P, Was G S. Oxidation of ferritic-martensitic alloys T91, HCM12A and HT-9 in supercritical water [J]. J. Nucl. Mater., 2007, 371: 1
[24] Bischoff J, Motta A T. Oxidation behavior of ferritic-martensitic and ODS steels in supercritical water [J]. J. Nucl. Mater., 2012, 424: 261
[25] Zhu Z L. Research on corrosion of Materials in power plant’s superheater in supercritical water [D]. Beijing: North China Electric Power University (Beijing), 2017
朱忠亮. 电站过热器材料在超临界水中的腐蚀机理研究 [D]. 北京: 华北电力大学(北京), 2017
[26] Bischoff J, Motta A T, Eichfeld C, et al. Corrosion of ferritic-martensitic steels in steam and supercritical water [J]. J. Nucl. Mater., 2013, 441: 604
[27] Zhong X Y, Wu X Q, Han E H. The characteristic of oxide scales on T91 tube after long-term service in an ultra-supercritical coal power plant [J]. J. Supercrit. Fluids, 2012, 72: 68
[28] Jin J Y, Chen D X, Li W Q, et al. The effect of plasma nitriding time on corrosion behavior of 304 stainless steel [J]. Chin. J. Vac. Sci. Technol., 2022, 42: 850
金佳莹, 陈东旭, 李婉晴 等. 等离子体渗氮时间对304不锈钢腐蚀行为的影响研究 [J]. 真空科学与技术学报, 2022, 42: 850
[29] Chen Y L, Zhang Z Z, Yao N K, et al. Initial corrosion behavior of non-nitriding and nitriding 38CrMoAl steel in salt spray environment [J]. Surf. Technol., 2021, 50(1): 383
陈跃良, 张柱柱, 姚念奎 等. 未渗氮和渗氮38CrMoAl钢在盐雾环境中的初期腐蚀行为 [J]. 表面技术, 2021, 50(1): 383
[30] Evans H E, Lobb R C. Conditions for the initiation of oxide-scale cracking and spallation [J]. Corros. Sci., 1984, 24: 209
[1] HE Jianghai, YANG Ziyu, LIU Qi, MA Zihua, HE Wei, CHEN Fei. Research Progress on Modification of Microarc Oxidation Coatings on Ti-alloy Surface by Adding Ceramic Particles to Electrolyte[J]. 中国腐蚀与防护学报, 2025, 45(5): 1175-1186.
[2] GAO Yunxia, HE Kun, ZHANG Ruiqian, LIANG Xue, WANG Xianping, FANG Qianfeng. Effect of Dissolved Oxygen on Long-term Corrosion of Domestic FeCrAl Based Alloys in High Temperature and High Pressure Waters[J]. 中国腐蚀与防护学报, 2025, 45(4): 1081-1088.
[3] ZHANG Han, LIU Xuanzhen, HUANG Aihui, ZHAO Xiaofeng, LU Jie. Manufacturing and Research Progress in Metallic Bond Coats for Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
[4] REN Mingze, DONG Lin, YANG Guanjun. Research Progress on Material and Structure Optimization of Environmental Barrier Coatings[J]. 中国腐蚀与防护学报, 2025, 45(1): 33-45.
[5] DONG Ziye, WU Yiheng, LU Chong, SHEN Zhao, ZENG Xiaoqin. Research Progress in Metallic Interconnectors for Solid Oxide Fuel Cells (SOFCs)[J]. 中国腐蚀与防护学报, 2025, 45(1): 46-60.
[6] YAN Haojie, YIN Ruozhan, WANG Wenjun, SUN Qingqing, WU Liankui, CAO Fahe. Cyclic Oxidation Behavior of TiAl Alloy with Electrodeposited SiO2 Coating[J]. 中国腐蚀与防护学报, 2025, 45(1): 81-91.
[7] XU Xiwen, SHU Xiaoyong, CHEN Zhiqun, HE Hairui, DONG Shuhe, FANG Yuqing, PENG Xiao. Oxidation Behavior of CVD Aluminized Coatings on DD6 Single Crystal Ni-based Superalloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 148-154.
[8] PEI Haiqing, XIAO Jingbo, LI Wei, YU Haoyu, WEN Zhixun, YUE Zhufeng. First Principles Study on Effect of Al-O Element Aggregation on Oxidation of a Ni-based Single Crystal Superalloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 173-181.
[9] ZHANG Weidong, CUI Yu, LIU Li, WANG Fuhui. Corrosion Behavior of Pre-oxidized GH4169 Alloy Beneath Solid NaCl Deposit Film in Wet Oxygen Flow at 600 oC[J]. 中国腐蚀与防护学报, 2025, 45(1): 182-190.
[10] ZHANG Caiyun, LI Shuai, BAO Zebin, ZHU Shenglong, WANG Fuhui. Stripping and Refurbishment of (Ni, Pt)Al Coating After Service for Different Oxidation Durations[J]. 中国腐蚀与防护学报, 2025, 45(1): 201-208.
[11] CHEN Hui, XU Fubin, FANG Yaxiong, ZHU Zhongliang. Oxidation Behavior of Super304H Stainless Steel in Supercritical Water at 605 and 640 oC[J]. 中国腐蚀与防护学报, 2025, 45(1): 209-216.
[12] GUO Jingbo, YANG Shouhua, ZHOU Ziyi, MU Rende, XIE Yun, SHU Xiaoyong, DAI Jianwei, PENG Xiao. High-temperature Oxidation Behavior of Laser Additively Manufactured AlCoCrFeNiSi High Entropy Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
[13] FAN Chunhua, WU Qianlin, XUE Shan, GE Jialu. Effect of Cr- and Si-addition on Oxidation Behavior of N80 Carbon Steel for Gas Injection Wells in Fire-flooding Oil Field[J]. 中国腐蚀与防护学报, 2025, 45(1): 231-236.
[14] XIE Dongbai, LAI Tian, TANG Zhijie, DUO Shuwang, DENG Shi. Corrosion Behavior of 304 Stainless Steel in Simulated Ethanol Fire Atmosphere[J]. 中国腐蚀与防护学报, 2025, 45(1): 237-243.
[15] LI Kaiyang, ZHAI Yunlong, HU Xinyu, WU Hong, LIU Bin, XING Shaohua, HOU Jian, ZHANG Fan, ZHANG Naiqiang. Research Progress on High Temperature Corrosion of Eutectic High Entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
No Suggested Reading articles found!