Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (1): 33-45    DOI: 10.11902/1005.4537.2024.283
Current Issue | Archive | Adv Search |
Research Progress on Material and Structure Optimization of Environmental Barrier Coatings
REN Mingze, DONG Lin(), YANG Guanjun
State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article: 

REN Mingze, DONG Lin, YANG Guanjun. Research Progress on Material and Structure Optimization of Environmental Barrier Coatings. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 33-45.

Download:  HTML  PDF(21554KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Environment barrier coatings (EBC) provide effective protection from high-temperature water vapor corrosion for silicon carbide ceramic matrix composites (SiC-CMC), serving as a key material for the next-generation high-temperature components of aircraft engines. This paper reviews the preparation technology and typical structural characteristics for EBC of rare earth silicate/Si bond layer, and discusses the service failure mechanisms in high-temperature engine environments rich in water vapor and deposits CaO-MgO-Al2O3-SiO2 (CMAS). Furthermore, addressing issues such as thermal mismatch of coatings, high-temperature water vapor corrosion, CMAS corrosion, and bond coat oxidation, the design and optimization methods of silicate top coats and Si bond coats are summarized from the perspectives of materials and structures. In response to the demand for even higher operating temperatures, advancements in ultra-high-temperature surface layer structure design and the development of new high-temperature-resistant bond coat materials are introduced. Finally, future research directions for high-performance environment barrier coatings are discussed.

Key words:  environmental barrier coatings      rare earth silicate      thermal spraying      corrosion      oxidation     
Received:  03 September 2024      32134.14.1005.4537.2024.283
ZTFLH:  TG174.4  
Fund: National Natural Science Foundation of China(52301102);China Postdoctoral Science Foundation(2024M752571)
Corresponding Authors:  DONG Lin, E-mail: donglin@xjtu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.283     OR     https://www.jcscp.org/EN/Y2025/V45/I1/33

Fig.1  Operating temperature prediction and research progress of materials applied in gas turbine engines[3]
Fig.2  Key performance requirements of EBC materials
Materialα / × 10-6·K-1λ / W·(m·K)-1
SiC4.5~5-
Si3.5~4.510~20
Mullite5~6-
BSAS (monoclinic)4~5-
BSAS (hexagonal)7~8-
Yb2SiO57~80.74~1.15
Er2SiO57~81.42
Y2SiO57~81.65
Gd2SiO59.9~10.31.45
Lu2SiO56.71.63
Yb2Si2O74~62.0
Lu2Si2O73.8-
Yb2O36.8~8.4-
YSZ10.52~5
Table 1  Thermal parameters of commonly investigated EBC candidate materials[3,6,9]
Fig.3  Evolution of structure and material of EBC system: (a) the first generation-YSZ/Mullite, (b) the second generation-BSAS/Mullite/Si, (c) the third generation-REMS/Mullite/Si[20], (d) the third generation-REDS/Si[21]
Fig.4  Typical structures of EBC obtained via low-temperature fabrication methods: (a, b) electrophoretic deposition-sintering method[24], (c) suspension immersion coating-sintering method[25]
Fig.5  Deposition mechanism of thermal spray coatings[27]
Fig.6  Typical structures of EBC prepared by APS method: (a1, a2) as-sprayed coating, (b1, b2) annealed coating[29]
Fig.7  Typical structures of EBC prepared by spraying under low pressure: (a) cross section[34], (b) surface[35]
Fig.8  Primary failure modes of EBC
Fig.9  Microstructure change of SiO2-TGO corresponding to its thickening and cracking after 200 h (a), 500 h (b) and 1000 h (c) thermal cycling at 1300 oC in air[39]
Fig.10  Microstructural characteristics of EBC after high-temperature water vapor corrosion[41]
Fig.11  Influences of temperature and airflow rate on the morphology of EBC during water vapor corrosion: (a) low tem-perature and low flow velocity[3], (b) low temperature and high flow velocity[42], (c) high temperature and high flow velocity[43]
Fig.12  Microstructures of the top layer of EBC after CMAS corrosion: (a) low-magnification image, (b) high-magnification image[44]
Fig.13  High-temperature CMAS corrosion of EBC: (a) effect of temperature on CaO-AlO1.5-SiO2 equilibrium phase diagram[45],(b) microstructure of YbDS after CMAS corrosion at 1500 oC[46]
Fig.14  Effect of solid solution high entropy on water vapor stability of rare earth silicate[44]
Fig.15  Microstructures of the top layers of YbDS coatings without (a) and with (b) Al2O3 doping after water vapor corrosion[51]
Fig.16  Morphological characteristics of plasma sprayed Yb2Si2O7 deposits under the pre-heating conditions of room temper-ature (a), 300 oC (b) and 600 oC (c)[52]
Fig.17  Microstructures of EBC without (a1, a2) and with (b1, b2) aluminum infiltration densification after water vapor corrosion[54]
Fig.18  Microstructural characteristic of T/EBC system composed of LMA/LMA-LAS/YbDS/Si multilayers[55]
Fig.19  Microstructural characteristics of Si-HfO2 as a novel bonding layer before (a) and after (b) oxidation at 1370 oC for 100 h[59]
Fig.20  Surface microstructures of a novel bonding layer YSi after slow oxidation (a) and rapid oxidation (b) at high temperature[62]
1 Wu Y, Guo X Y, He D Y, et al. Research progress of CMAS corrosion and protection method for thermal barrier coatings in aero-engines [J]. China Surf. Eng., 2023, 36(5): 1
吴 杨, 郭星晔, 贺定勇 等. 航空发动机热障涂层的CMAS腐蚀与防护研究进展 [J]. 中国表面工程, 2023, 36(5): 1
2 Sun Y, Li Z B, Ma L W, et al. Research progress on corrosion failure of high-temperature coatings in aero-engines [J]. Therm. Spray Technol., 2024, 16(2): 1
孙 毅, 李宗宝, 马菱薇 等. 航空发动机高温涂层腐蚀失效研究进展 [J]. 热喷涂技术, 2024, 16(2): 1
3 Padture N P. Advanced structural ceramics in aerospace propulsion [J]. Nat. Mater., 2016, 15: 809
4 Zou L X, Chang H, Gao M H, et al. Research progress and development trend of ground heavy duty gas turbine and its thermal barrier coatings [J]. China Surf. Eng., 2024, 37(1): 18
邹兰欣, 常 辉, 高明浩 等. 地面重型燃气轮机及其热障涂层的研究进展与发展趋势 [J]. 中国表面工程, 2024, 37(1): 18
5 Zhu D M. Advanced environmental barrier coatings for SiC/SiC ceramic matrix composite turbine components [A]. OhjiT, SinghM. Engineered Ceramics: Current Status and Future Prospects [M]. Hoboken: John Wiley & Sons, Inc., 2016: 187
6 Qi H X, Ma R, Meng G H, et al. Research progress on aluminized coatings for high temperature blades [J]. Mater. Prot., 2022, 55(10): 147
齐浩雄, 马 瑞, 孟国辉 等. 高温叶片用渗铝涂层的研究进展 [J]. 材料保护, 2022, 55(10): 147
7 Ma Z, Liu L, Zheng W. Environmental barrier coating for aeroengines: materials and properties [J]. Adv. Ceram., 2019, 40: 331
马 壮, 刘 玲, 郑 伟. 航空发动机环境障涂层: 材料及性能 [J]. 现代技术陶瓷, 2019, 40: 331
8 Gatzen C, Mack D E, Guillon O, et al. Water vapor corrosion test using supersonic gas velocities [J]. J. Am. Ceram. Soc., 2019, 102: 6850
doi: 10.1111/jace.16595
9 Lee K N. Special issue: environmental barrier coatings [J]. Coatings, 2020, 10: 512
10 Shi T J, Zhang X, Peng H R, et al. Research status and prospect of thermal barrier coating materials system [J]. Therm. Spray Technol., 2023, 15(2): 1
史天杰, 张 鑫, 彭浩然 等. 热障涂层材料体系研究现状及展望 [J]. 热喷涂技术, 2023, 15(2): 1
11 Zhou B Y, Cui Y J, Wang C L, et al. Research progress in rare earth silicate environmental barrier coatings [J]. J. Mater. Eng., 2023, 51(12): 12
doi: 10.11868/j.issn.1001-4381.2023.000017
周邦阳, 崔永静, 王长亮 等. 稀土硅酸盐环境障涂层研究进展 [J]. 材料工程, 2023, 51(12): 12
doi: 10.11868/j.issn.1001-4381.2023.000017
12 Cong K, Gao X Z, Zhang B P. Development of environmental barrier coatings for aero-engines [J]. J. Propul. Technol., 2021, 42: 2161
丛 凯, 高贤志, 张宝鹏. 航空发动机用环境障涂层的发展 [J]. 推进技术, 2021, 42: 2161
13 Bai B T, Zhang D M, Ji X J, et al. Research progress on the selection of materials for environmental barrier coating [J]. Therm. Spray Technol., 2022, 14(3): 1
白博添, 章德铭, 冀晓鹃 等. 环境障涂层选材研究进展 [J]. 热喷涂技术, 2022, 14(3): 1
14 Wang J N, Wang C H, Wang Y, et al. Review of rare earth silicate environmental barrier coatings [J]. China Surf. Eng., 2021, 34(6): 21
王佳宁, 王超会, 王 铀 等. 稀土硅酸盐环境障涂层综述 [J]. 中国表面工程, 2021, 34(6): 21
doi: 10.11933/j.issn.1007-9289.20210603001
15 Olson D H, Deijkers J A, Quiambao-Tomko K, et al. Evolution of microstructure and thermal conductivity of multifunctional environmental barrier coating systems [J]. Mater. Today Phys., 2021, 17: 100304
16 Lee K N, Miller R A. Development and environmental durability of mullite and Mullite/YSZ Dual layer coatings for SiC and Si3N4 ceramics [J]. Surf. Coat. Technol., 1996, 86-87: 142
17 Zhou B Y, Cui Y J, Wang C L, et al. Effect of plasma spraying parameters on microstructure and property of the BSAS based abradable environmental barrier coatings [J]. Therm. Spray Technol., 2023, 15(2): 42
周邦阳, 崔永静, 王长亮 等. 等离子喷涂工艺参数对BSAS基可磨耗环境障涂层组织性能影响 [J]. 热喷涂技术, 2023, 15(2): 42
18 Chen L, Yang G J, Li C X, et al. Thermally sprayed ceramic coatings for wear-resistant application and coating structure tailoring towards advanced wear-resistant coatings [J]. Adv. Ceram., 2016, 37(1): 3
陈 林, 杨冠军, 李成新 等. 热喷涂陶瓷涂层的耐磨应用及涂层结构调控方法 [J]. 现代技术陶瓷, 2016, 37(1): 3
19 Zhuang M X, Du Y Y, Yuan J H, et al. Research progress of high temperature failure of plasma sprayed environmental barrier coatings [J]. China Surf. Eng., 2020, 33(3): 33
庄铭翔, 都业源, 袁建辉 等. 等离子体喷涂环境障涂层高温失效研究进展 [J]. 中国表面工程, 2020, 33(3): 33
20 Richards B T, Wadley H N G. Plasma spray deposition of tri-layer environmental barrier coatings [J]. J. Eur. Ceram. Soc., 2014, 34: 3069
21 Richards B T, Young K A, de Francqueville F, et al. Response of ytterbium disilicate-silicon environmental barrier coatings to thermal cycling in water vapor [J]. Acta Mater., 2016, 106: 1
22 Liu Y W, Nong Z S. Research status of ceramic coatings prepared by sol-gel method [J]. Mater. Prot., 2023, 56(5): 173
刘雨薇, 农智升. 溶胶—凝胶法制备陶瓷涂层的研究现状 [J]. 材料保护, 2023, 56(5): 173
doi: 10.16577/j.issn.1001-1560.2023.0121
23 Yan Z, Peng H R, Ji X J, et al. Preparation of Yb2Si2O7 precursor and its agglomerated powder for low pressure plasma spraying [J]. Therm. Spray Technol., 2022, 14(3): 38
颜 正, 彭浩然, 冀晓鹃 等. Yb2Si2O7前驱体及其低压等离子喷涂用粉末制备研究 [J]. 热喷涂技术, 2022, 14(3): 38
24 Yilmaz E, Paksoy A H, Gibson G, et al. Constrained sintering and thermal ageing behaviour of electrophoretically deposited Yb2Si2O7 environmental barrier coating [J]. J. Eur. Ceram. Soc., 2023, 43: 6427
25 Chen H F, Klemm H. Environmental barrier coatings for silicon nitride [J]. Key Eng. Mater., 2011, 484: 139
26 Zhang H B, Duan W H, Zhang T, et al. Research overview of thermal barrier coating materials [J]. Mater. Prot., 2022, 55(7): 177
张洪博, 段文皓, 张 涛 等. 热障涂层材料研究概述 [J]. 材料保护, 2022, 55(7): 177
27 Xu B S, Liu S C. China Material Engineering Ceremony: Material Surface Engineering (Part I) [M]. Beijing: Chemical Industry Press, 2006: 58
徐滨士, 刘世参. 中国材料工程大典: 材料表面工程(上) [M]. 北京: 化学工业出版社, 2006: 58
28 Zhang Y, Guo L L, Ju L Y, et al. Analysis of flow field and particle characteristics of atmospheric plasma spraying [J]. Powder Metall. Ind., 2024, 34(2): 49
张 勇, 郭龙龙, 鞠录岩 等. 大气等离子喷涂流场与粒子特性分析 [J]. 粉末冶金工业, 2024, 34(2): 49
29 Wang H Y, Zhang J, Sun L C, et al. Microstructure and phase composition evolution of dual-phase ytterbium silicate coatings plasma sprayed from stoichiometric Yb2Si2O7 feedstock powder [J]. Surf. Coat. Technol., 2022, 437: 128373
30 Li G R, Wang L S, Yang G J. Achieving self-enhanced thermal barrier performance through a novel hybrid-layered coating design [J]. Mater. Des., 2019, 167: 107647
31 Yang B, Li G R, Xu T, et al. Densification method of air-plasma-sprayed environmental barrier coatings achieved by pre-heat treatment [J]. J. Mater. Eng., 2021, 49(11): 116
doi: 10.11868/j.issn.1001-4381.2020.001156
杨 博, 李广荣, 徐 彤 等. 大气等离子喷涂环境障涂层的预热处理致密化方法 [J]. 材料工程, 2021, 49(11): 116
32 Guo Q, He W T, He J, et al. Characterization of Yb2SiO5-based environmental barrier coating prepared by plasma spray-physical vapor deposition [J]. Ceram. Int., 2022, 48: 19990
33 Zhang X, Liu M, Zhang X F, et al. Research progress of high temperature protective coatings by plasma spray-physical vapor deposition [J]. China Surf. Eng., 2018, 31(5): 39
张 啸, 刘 敏, 张小锋 等. 等离子喷涂-物理气相沉积高温防护涂层研究进展 [J]. 中国表面工程, 2018, 31(5): 39
34 Deng C M, Xiao J, Cao J X, et al. Research progress of PS-PVD rare earth high temperature functional coatings [J]. Mater. Res. Appl., 2019, 13(3): 247
邓春明, 肖 娟, 曹家旭 等. 等离子喷涂-物理气相沉积稀土高温功能涂层研究进展 [J]. 材料研究与应用, 2019, 13(3): 247
35 Presby M J, Harder B J. Solid particle erosion of a plasma spray-physical vapor deposition environmental barrier coating in a combustion environment [J]. Ceram. Int., 2021 47: 24403
36 Xiao S K, Li J Z, Huang P X, et al. Evaluation of environmental barrier coatings: a review [J]. Int. J. Appl. Ceram. Technol., 2023, 20: 2055
37 Carpenter M A, Salje E K H, Graeme-Barber A. Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals [J]. Eur. J. Mineral., 1998, 10: 621
38 Bakan E, Vaßen R. Oxidation kinetics of atmospheric plasma sprayed environmental barrier coatings [J]. J. Eur. Ceram. Soc., 2022, 42: 5122
39 Hu X P, Jiang W H, Li B. High Temperature water oxygen corrosion mechanism of ytterbium disilicate environmental barrier coatings [J]. Mater. Prot., 2024, 57(3): 63
胡祥鹏, 蒋文昊, 李 彪. 双硅酸镱环境障涂层的高温水氧腐蚀机理研究 [J]. 材料保护, 2024, 57(3): 63
40 Richards B T, Begley M R, Wadley H N G. Mechanisms of ytterbium monosilicate/mullite/silicon coating failure during thermal cycling in water vapor [J]. J. Am. Ceram. Soc., 2015, 98: 4066
41 Bakan E, Sohn Y J, Kunz W, et al. Effect of Processing on high-velocity water vapor recession behavior of Yb-silicate environmental barrier coatings [J]. J. Eur. Ceram. Soc., 2019, 39: 1507
42 Bakan E, Kindelmann M, Kunz W, et al. High-velocity water vapor corrosion of Yb-silicate: sprayed vs. sintered body [J]. Scr. Mater., 2020, 178: 468
43 Wang C. Deposition characteristics and corrosion mechanism under water vapor of Yb2SiO5 environmental barrier coatings [D]. Guangzhou: South China University of Technology, 2020
王 超. Yb2SiO5环境障涂层沉积特性及水蒸气腐蚀机制 [D]. 广州: 华南理工大学, 2020
44 Guo X T, Zhang Y L, Li T, et al. High-entropy rare-earth disilicate (Lu0.2Yb0.2Er0.2Tm0.2Sc0.2)2Si2O7: a potential environmental barrier coating material [J]. J. Eur. Ceram. Soc., 2022, 42: 3570
45 Poerschke D L, Jackson R W, Levi C G. Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions [J]. Annu. Rev. Mater. Res., 2017, 47: 297
46 Turcer L R, Krause A R, Garces H F, et al. Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: part II, β-Yb2Si2O7 and β-Sc2Si2O7 [J]. J. Eur. Ceram. Soc., 2018. 38: 3914
47 Costa G C C, Jacobson N S. Mass spectrometric measurements of the silica activity in the Yb2O3-SiO2 system and implications to assess the degradation of silicate-based coatings in combustion environments [J]. J. Eur. Ceram. Soc., 2015, 35: 4259
48 Duffy J A. Acid-base reactions of transition metal oxides in the solid state [J]. J. Am. Ceram. Soc., 1997, 80: 1416
49 Turcer L R, Krause A R, Garces H F. Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: part I, YAlO3 and γ-Y2Si2O7 [J]. J. Eur. Ceram. Soc., 2018, 38: 3905
50 Du Z, Chen L, Meng G H, et al. Research progresses on modification technology and application of enamel coating [J]. Mater. Prot., 2023, 56(4): 158
杜 撰, 陈 林, 孟国辉 等. 搪瓷涂层改性技术及应用研究进展 [J]. 材料保护, 2023, 56(4): 158
51 Paksoy A H, Martins J P, Cao H T, et al. Influence of alumina addition on steam corrosion behaviour of ytterbium disilicates for environmental barrier coating applications [J]. Corros. Sci., 2022, 207: 110555
52 Yang B. Densification of APS-Yb2Si2O7 environmental barrier coa-tings and property of water vapor corrosion resistance [D]. Xi'an: Xi'an Jiaotong University, 2021
杨 博. 等离子喷涂Yb2Si2O7环境障涂层的致密化研究方法与抗水氧腐蚀性能研究 [D]. 西安: 西安交通大学, 2021
53 Wen Z L, Xiao P, Li Z, et al. Thermal cycling behavior and oxidation resistance of SiC whisker-toughened-mullite/SiC coated carbon/carbon composites in burner rig tests [J]. Corros. Sci., 2016, 106: 179
54 Dong L, Liu M J, Zhang X F, et al. Improved water vapor resistance of environmental barrier coatings densified by aluminum infiltration [J]. Ceram. Int., 2022, 48: 23638
55 Lü K Y, Dong S J, Huang Y, et al. Thermal shock behavior of La-MgAl11O19/Yb2Si2O7/Si thermal/environmental barrier coatings with LaMgAl11O19-LiAlSiO4 transition layer [J]. Surf. Coat. Technol., 2022, 443: 128
56 Singhal S C, Lange F F. Effect of alumina content on the oxidation of hot-pressed silicon carbide [J]. J. Am. Ceram. Soc., 1975, 58: 433
57 Chen L, Wang W J, Li J H, et al. Suppressing the phase-transition-induced cracking of SiO2 TGOs by lattice solid solution [J]. J. Eur. Ceram. Soc., 2023, 43: 3201
58 Harder B J. Oxidation performance of Si-HfO2 environmental barrier coating bond coats deposited via plasma spray-physical vapor deposition [J]. Surf. Coat. Technol., 2020, 384: 125311
59 Chen L, Luo J C, Yang W Q, et al. Durable dual-state duplex Si-HfO2 with excellent oxidation and cracking resistance [J] J. Adv. Ceram., 2024, 13: 388
60 Miyazaki T, Usami S, Arai Y, et al. Oxidation behavior of ytterbium silicide in air and steam [J]. Intermetallics, 2021, 128: 106
61 Golden R A, Opila E J. High-temperature oxidation of yttrium silicides [J]. J. Mater. Sci., 2018, 53: 3981
62 Wang W J, Luo J C, Chen L, et al. One-step multi-compositional oxidation of YSi alloy: experiments and Ab initio computation [J]. J. Mater. Sci. Technol., 2023, 158: 253
doi: 10.1016/j.jmst.2023.02.042
[1] ZHANG Caiyun, LI Shuai, BAO Zebin, ZHU Shenglong, WANG Fuhui. Stripping and Refurbishment of (Ni, Pt)Al Coating After Service for Different Oxidation Durations[J]. 中国腐蚀与防护学报, 2025, 45(1): 201-208.
[2] MA Hongyu, LIU Rui, CUI Yu, KE Peiling, LIU Li, WANG Fuhui. Effect of Hydrostatic Pressure on Corrosion Behavior of Cr/GLC Laminated Coating[J]. 中国腐蚀与防护学报, 2025, 45(1): 103-114.
[3] ZHANG Weidong, CUI Yu, LIU Li, WANG Fuhui. Corrosion Behavior of Pre-oxidized GH4169 Alloy Beneath Solid NaCl Deposit Film in Wet Oxygen Flow at 600 oC[J]. 中国腐蚀与防护学报, 2025, 45(1): 182-190.
[4] YANG Xiaodong, LI Xue, YU Zheng, YANG Shasha, CHEN Minghui, WANG Fuhui. Corrosion Behavior of Enamel Coatings in Molten Salts MgCl2-KCl-NaCl at 600 oC[J]. 中国腐蚀与防护学报, 2025, 45(1): 155-163.
[5] YAN Haojie, YIN Ruozhan, WANG Wenjun, SUN Qingqing, WU Liankui, CAO Fahe. Cyclic Oxidation Behavior of TiAl Alloy with Electrodeposited SiO2 Coating[J]. 中国腐蚀与防护学报, 2025, 45(1): 81-91.
[6] DONG Ziye, WU Yiheng, LU Chong, SHEN Zhao, ZENG Xiaoqin. Research Progress in Metallic Interconnectors for Solid Oxide Fuel Cells (SOFCs)[J]. 中国腐蚀与防护学报, 2025, 45(1): 46-60.
[7] LIANG Yuwei, WANG Jie, SONG Peng, HUANG Taihong, BAO Yuxu. Wear and Corrosion Resistance of FeCrMoSiB Amorphous Coating[J]. 中国腐蚀与防护学报, 2025, 45(1): 191-200.
[8] XIE Dongbai, LAI Tian, TANG Zhijie, DUO Shuwang, DENG Shi. Corrosion Behavior of 304 Stainless Steel in Simulated Ethanol Fire Atmosphere[J]. 中国腐蚀与防护学报, 2025, 45(1): 237-243.
[9] ZHANG Han, LIU Xuanzhen, HUANG Aihui, ZHAO Xiaofeng, LU Jie. Manufacturing and Research Progress in Metallic Bond Coats for Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
[10] LI Kaiyang, WU You, ZHANG Guanlin, ZHANG Naiqiang. Research Progress of Environmental Cracking of Structural Metallic Materials for High Temperature Supercritical CO2 System[J]. 中国腐蚀与防护学报, 2025, 45(1): 61-68.
[11] FAN Chunhua, WU Qianlin, XUE Shan, GE Jialu. Effect of Cr- and Si-addition on Oxidation Behavior of N80 Carbon Steel for Gas Injection Wells in Fire-flooding Oil Field[J]. 中国腐蚀与防护学报, 2025, 45(1): 231-236.
[12] HUANG Qinying, LI Yuzhuo, YANG Yingfei, REN Pan, WANG Qiwei. Hot Corrosion Behavior of Pt Modified AlCoCrFeNi2.1 Eutectic High Entropy Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 115-126.
[13] ZHAO Lijia, CUI Xinyu, WANG Jiqiang, XIONG Tianying. Corrosion Behavior of Cold-sprayed B4C/Al Composite Coating in Boric Acid Solution[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[14] LI Hanye, ZHANG Zhichao, WANG Qunchang, GU Yan, CHEN Zehao, YANG Shasha, MEI Feiqiang. Formation Mechanism of Residue Water Stains on TC4 Ti-alloy Surface and Conter-measures[J]. 中国腐蚀与防护学报, 2025, 45(1): 244-248.
[15] GUO Jingbo, YANG Shouhua, ZHOU Ziyi, MU Rende, XIE Yun, SHU Xiaoyong, DAI Jianwei, PENG Xiao. High-temperature Oxidation Behavior of Laser Additively Manufactured AlCoCrFeNiSi High Entropy Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
No Suggested Reading articles found!