Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (3): 795-802    DOI: 10.11902/1005.4537.2024.131
Current Issue | Archive | Adv Search |
Electrodeposition and Performance of WC-Zn Composite Coatings on Q235 Carbon Steel
LI Xiangdong, LIU Changhao, ZHANG Chi, CHEN Wenjuan(), CUI Chenyue, ZHU Yongwen, WANG Shushu
School of Materials Science and Engineering, Heifei University of Technology, Hefei 230009, China
Cite this article: 

LI Xiangdong, LIU Changhao, ZHANG Chi, CHEN Wenjuan, CUI Chenyue, ZHU Yongwen, WANG Shushu. Electrodeposition and Performance of WC-Zn Composite Coatings on Q235 Carbon Steel. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 795-802.

Download:  HTML  PDF(10307KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Electro-galvanizing is one of the most widely used methods in the field of corrosion prevention for steels, but during the service, the galvanized layer is prone to friction and wear. This article attempts to optimize the plating process by adjusting the electrode layout and bath temperature, thereby, novel WC-Zn composite coatings were then electrodeposited on the surface of Q235 steel, aiming in the improvement of the corrosion resistance and friction-wear property of the steel substrate. Meanwhile, the morphology, structure, and electrochemical characteristics of the acquired coatings were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), hardness measurement, and electrochemical testing. The results showed that compared with conventional left and right electroplating, the up and down electroplating method can significantly increase the content of WC particles in the composite coating. When the increasing electrolyte temperature, the WC content in the coating formed by the up and down electroplating method is significantly increased. At 60 ℃, the WC content in the coating is as high as 43.2%, while the WC particles were uniformly distributed on the surface of the coating. In addition, the addition of WC particles improves the hardness of the coating, and the free-corrosion current density of the electrode of WC-Zn/Q235 steel gradually decreases with the increase of WC content in the WC-Zn composite coating.

Key words:  WC-Zn composite coating      electroplating      electrochemistry      wear resistance     
Received:  22 April 2024      32134.14.1005.4537.2024.131
ZTFLH:  TG171  
Fund: Innovation and Entrepreneurship Project for College Students(S202310359317);Project of Anhui Dingwang Environmental Protection Materials Technology Co., Ltd(W2020JSKF0565)
Corresponding Authors:  CHEN Wenjuan, E-mail: wjchen314@hfut.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.131     OR     https://www.jcscp.org/EN/Y2025/V45/I3/795

Fig.1  Schematic diagrams of left-right (ZYWC) (a) and down-up (SXWC) (b) positions for cathode and anode during composite plating
Fig.2  XRD patterns of WC-Zn composite plating coatings prepared by ZYWC (a) and SXWC (b)
Fig.3  Surface morphologies (a, c) and W distributions (b, d) of WC-Zn coatings electrodeposited by SXWC (a, b) and ZYWC (c, d) at 60 ℃
Fig.4  Cross-sectional morphologies of WC-Zn coatings electrodeposited by SXWC (a) and ZYWC (b) at 60 ℃
Fig.5  SEM images of WC-Zn coatings electrodeposited by SXWC (a) and ZYWC (b) at 60 ℃ after corrosion for 12 h
Fig.6  Impedance module (a-c) and phase angle (d-f) plots of Q235 steel specimens with Zn and WC-Zn coatings after corrosion for different time
Fig.7  Polarization curves of Q235 steel electrodes with Zn and WC-Zn coatings after corrosion for 0 d (a), 1 d (b) and 2 d (c)
Fig.8  Corrosion current densities of Q235 steel electrodes with Zn and WC-Zn coatings after corrosion for different time
MaterialPosition 1Position 2Position 3Average value
Q235 steel150152152151
SXWC-Zn coating172170175172
ZYWC-Zn coating109113115112
Zn coating100102101101
Table 1  Brinell hardness (HB) values of Q235 steel samples with Zn and WC-Zn electrodeposited coatings
[1] Qin S J, Wang X, Cao B Z, et al. Research review on corrosion behavior of steel [J]. Nat. Sci. J. Hainan Univ., 2023, 41: 104
秦术杰, 王 欣, 曹宝珠 等. 钢材腐蚀行为的研究进展 [J]. 海南大学学报自然科学版, 2023, 41: 104
[2] Xie R Z, Geng R C, Qi Z, et al. Investigation of Q235 steel electrochemical corrosion behavior in naturally dried sandy soil [J]. Int. J. Electrochem. Sci., 2023, 18: 100376
[3] Zhang Y J. Corrosion mechanism and protection technology of steel structure [J]. Total Corros. Control, 2022, 36(3): 104
张英杰. 钢结构的腐蚀机理及防护工艺 [J]. 全面腐蚀控制, 2022, 36(3): 104
[4] Yang Y H, Liu F C. Application of construction technology of steel structure of building steel structure and its quality control measures [J]. Building. Technol. Dev., 2019, 46(18): 14
杨伊浩, 刘富成. 钢结构网架施工技术应用及质量控制措施 [J]. 建筑技术开发, 2019, 46(18): 14
[5] Rossi S, Pinamonti M, Calovi M. Influence of soil chemical characteristics on corrosion behaviour of galvanized steel [J]. Case Stud. Constr. Mater., 2022, 17: e01257
[6] Kavunga S, Luckeneder G, Schachinger E D, et al. In situ characterization of galvanized low-alloyed steels with high-temperature cyclic voltammetry during annealing [J]. Electrochim. Acta, 2022, 424: 140653
[7] Zhuo L C, Zhang Y H, Zhao Z, et al. Preparation and properties of ultrafine-grained W-Cu composites reinforced with tungsten fibers [J]. Mater. Lett., 2019, 243: 26
[8] Nayana K O, Ranganatha S, Shubha H N, et al. Effect of sodium lauryl sulphate on microstructure, corrosion resistance and microhardness of electrodeposition of Ni-Co3O4 composite coatings [J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 2371
[9] Fu X Q, Duan S L, Lin J R, et al. Effects of CeO2 nano-rare earth particles doping on properties of Ni-Fe-Co-P alloy coatings [J]. Mater. Sci. Technol., 2020, 49: 2095
傅秀清, 段双陆, 林尽染 等. 纳米稀土CeO2掺杂对Ni-Fe-Co-P合金镀层性能的影响 [J]. 稀有金属材料与工程, 2020, 49: 2095
[10] Yu G W, Liu H, Wang J Y. Pattern selection and the magnetic property of electrodeposits grown within a ultrathin FeSO4 solution layer [J]. Rare Met. Mater. Eng., 2020, 49: 209
于光伟, 刘 宏, 王继扬. FeSO4水溶液超薄液层电沉积物的形貌选择及其磁性研究 [J]. 稀有金属材料与工程, 2020, 49: 209
[11] Yang B L, Li X W, Ruan Y, et al. Electrodeposition processing of porous Cu/Ni composites and their performance [J]. Rare Met. Mater. Eng., 2019, 48: 3215
杨碧莲, 李星吾, 阮 莹 等. 多孔Cu/Ni复合材料的电沉积法制备及其性能 [J]. 稀有金属材料与工程, 2019, 48: 3215
[12] Ye Z G, He Q Q, Liu L, et al. Effect of treatment temperature on the contact resistance of electro-depositionsilver-graphite composite coating [J]. Rare Met. Mater. Eng., 2017, 46: 3989
叶志国, 何庆庆, 刘 磊. 处理温度对电沉积银石墨复合镀层接触电阻的影响 [J]. 稀有金属材料与工程, 2017, 46: 3989
[13] Solovjev D S, Solovjeva I A, Konkina V V, et al. Improving the uniformity of the coating thickness distribution during electroplating treatment of products using multi anode baths [J]. Mater. Today Proc., 2019, 19: 1895
[14] Li J M, Xu S Q, Liang M Z. Research progress on the mechanism of composite electroplating [J]. Electroplat. Pollut. Control, 2016, 36(2): 1
李家明, 徐淑庆, 梁铭忠. 复合电镀机制的研究进展 [J]. 电镀与环保, 2016, 36(2): 1
[15] Zhang C L, Zhou Q, Wan W L, et al. Research status about composite electroplating of nickel-based alumina nanoparticles [J]. Plat. Finish., 2013, 35(4): 13
张春丽, 周 琦, 万文露 等. 镍基氧化铝纳米微粒复合电镀的研究现状 [J]. 电镀与精饰, 2013, 35(4): 13
[16] Alizadeh M, Safaei H. Characterization of Ni-Cu matrix, Al2O3 reinforced nano-composite coatings prepared by electrodeposition [J]. Appl. Surf. Sci., 2018, 456: 195
[17] Zhou J X, Zhao G C, Li J S, et al. Electroplating of non-fluorinated superhydrophobic Ni/WC/WS2 composite coatings with high abrasive resistance [J]. Appl. Surf. Sci., 2019, 487: 1329
[18] Liu Y F, Chen J, Yuan Y, et al. Effect of duty cycle on the corrosion resistance and hardness of Ni-WC Nano-composite coatings [J]. Electroplat. Pollut. Control, 2017, 37(2): 5
刘元福, 陈 吉, 袁 野 等. 占空比对Ni-WC纳米复合镀层耐蚀性及硬度的影响 [J]. 电镀与环保, 2017, 37(2): 5
[19] Kelly T G, Chen J G G. Metal overlayer on metal carbide substrate: unique bimetallic properties for catalysis and electrocatalysis [J]. Chem. Soc. Rev., 2012, 41: 8021
[20] Colton R J, Huang J T J, Wayne Rabalais J. Electronic structure of tungsten carbide and its catalytic behavior [J]. Chem. Phys. Lett., 1975, 34: 337
[21] Li B S, Zhang W W, Zhang W, et al. Preparation of Ni-W/SiC nanocomposite coatings by electrochemical deposition [J]. J. Alloy. Compd., 2017, 702: 38
[22] Tian L L, Xu J C. Electrodeposition and characterization of Ni-Y2O3 composite [J]. Appl. Surf. Sci., 2011, 257: 7615
[23] Chen W J, Fang L, Pan G. Corrosion evolution characteristics of Q235B steel in O3/SO2 composite atmosphere [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 450
陈文娟, 方 莲, 潘 刚. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性 [J]. 中国腐蚀与防护学报, 2021, 41: 450
[1] JIN Zhenting, SONG Qining, LIU Qi, PENG Chunlan, XU Nan, LU Qiqing, BAO Yefeng, ZHAO Lijuan, ZHAO Jianhua. Long-term Corrosion Behavior of Three Cu-alloys in 3.5%NaCl Solutions with Different pH Values[J]. 中国腐蚀与防护学报, 2025, 45(2): 506-514.
[2] YANG Zhenyu, JI Chao, GUO Liya, XU Run, PENG Wei, ZHAO Hongshan, WEI Xicheng, DONG Han. Initial Corrosion Behavior of Several Pure Irons and Steels in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(2): 469-478.
[3] ZHANG Yani, WANG Simin, FAN Bing. Corrosion and Passivation Behavior of TC4 Ti-alloy in a Simulated Downhole Liquid in High-temperature and High-pressed O2 + CO2 Environment[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[4] XIE Wenzhen, WANG Zhenyu, HAN En-Hou. Passivation Behavior of Corrosion Resistant Rebar Steels as Bare Steels in a Simulated Concrete Pore Fluid and as Rebar Steels Embedded in Concrete Made of Cement and Sea-sand in a Simulated Seawater[J]. 中国腐蚀与防护学报, 2024, 44(6): 1454-1464.
[5] FENG Shaoyu, ZHOU Zhaohui, YANG Lanlan, QIAO Yanxin, WANG Jinlong, WANG Fuhui. Electrochemical and Wear Behavior of TC4 Alloy in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1243-1254.
[6] ZHU Liyang, CHEN Junquan, ZHANG Xinxin, DONG Zehua, CAI Guangyi. Research Progress of Effect of Magnetic Field on Metal Corrosion[J]. 中国腐蚀与防护学报, 2024, 44(5): 1117-1124.
[7] PENG Wenshan, XING Shaohua, QIAN Yao, LIN Cunguo, HOU Jian, ZHANG Dalei. Effect of Flowing Seawater on Corrosion Characteristics of Passivation Film on TA2 Pure-Ti Pipes[J]. 中国腐蚀与防护学报, 2024, 44(4): 1038-1046.
[8] XING Shaohua, PENG Wenshan, QIAN Yao, LI Xiangbo, MA Li, ZHANG Dalei. Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[9] DAI Wei, LIU Yuanyuan, TU Wenrui, SUN Yangting, LI Jin, JIANG Yiming. Corrosion Behavior of Ag/Sn Galvanic Couple at Applied Potential[J]. 中国腐蚀与防护学报, 2024, 44(3): 700-706.
[10] WANG Tongtong, ZHANG Juanrui, GAO Yun, GAO Rongjie. Preparation of Lotus Root-like TiO2 Nanotube Arrays in NH4F-(NH4)2SO4 Composite Electrolyte and Its Photogenerated Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2024, 44(2): 389-395.
[11] LI Wenjie, CHE Xiaoyu, TANG Yongcun, LIU Guangming, TIAN Wenming, HE Hualin, LIU Chenhui. Effect of Plastic Deformation Processing on Corrosion Behavior of Pure Zinc in a Leaching Solution of Soil at Tianjin[J]. 中国腐蚀与防护学报, 2024, 44(2): 497-504.
[12] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[13] WANG Pengjie, SONG Yuhao, FAN Lin, DENG Kuanhai, LI Zhonghui, MEI Zongbin, GUO Lei, LIN Yuanhua. Inhibition of Q235 Steel in 1 mol/L HCl Solution by a New Efficient Imidazolium Schiff Base Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2024, 44(1): 59-70.
[14] PAN Dailong, SI Xiaodong, LV Jinhong. Effect of Flow Velocity on Flow Accelerated Corrosion Rate of Carbon Steel Elbow[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
[15] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
No Suggested Reading articles found!