|
|
A Review of Detection Methods and Prediction Models for Microbiologically Influenced Corrosion |
QI Peng( ), WANG Peng, ZENG Yan, ZHANG Dun |
Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China |
|
Cite this article:
QI Peng, WANG Peng, ZENG Yan, ZHANG Dun. A Review of Detection Methods and Prediction Models for Microbiologically Influenced Corrosion. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 602-610.
|
Abstract Microbiologically influenced corrosion (MIC) is a prevalent and serious form of metal corrosion that can cause substantial economic loss. Due to the complexity of the MIC process, developing techniques for detecting and controlling MIC is a key challenge in industrial corrosion science. This paper systematically reviews the research progress of MIC detection methods and prediction models. The detection methods of MIC include electrochemical techniques, bioanalytical methods, radiation detection, microscopy, and biosensing approaches. Each detection technique has its own merits and limitations, and the cooperative application of multiple techniques is needed to comprehensively evaluate the MIC process. The prediction models of MIC can be categorized into those based on risk assessment-based, mass transfer-based, and comprehensive electrochemistry-based models. Given the complexity of MIC systems, no single model has yet been capable of fully predicting MIC phenomena. It is recommended that future efforts be directed toward developing integrated models that account for influential factors and mechanisms, resolving measurements of the microenvironment within biofilms, in order to enhance the accuracy of MIC prediction.
|
Received: 10 April 2024
32134.14.1005.4537.2024.117
|
|
Fund: National Natural Science Foundation of China(42376208) |
Corresponding Authors:
QI Peng, E-mail: qipeng@qdio.ac.cn
|
[1] |
Li C, Wu J J, Zhang D, et al. Effects of Pseudomonas aeruginosa on EH40 steel corrosion in the simulated tidal zone [J]. Water Res., 2023, 232: 119708
|
[2] |
Little B J, Hinks J, Blackwood D J. Microbially influenced corrosion: towards an interdisciplinary perspective on mechanisms [J]. Int. Biodeterior. Biodegrad., 2020, 154: 105062
|
[3] |
Xu D K, Gu T Y, Lovley D R. Microbially mediated metal corrosion [J]. Nat. Rev. Microbiol., 2023, 21: 705
doi: 10.1038/s41579-023-00920-3
pmid: 37344552
|
[4] |
Zhang F, Wang H T, He Y J, et al. Case analysis of microbial corrosion in product oil pipeline [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 795
|
|
张 斐, 王海涛, 何勇君 等. 成品油输送管道微生物腐蚀案例分析 [J]. 中国腐蚀与防护学报, 2021, 41: 795
|
[5] |
Ke N, Ni Y Y, He J Q, et al. Research progress of metal corrosion caused by extracellular polymeric substances of microorganisms [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 278
|
|
柯 楠, 倪莹莹, 何嘉淇 等. 微生物胞外聚合物引起的金属腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 278
|
[6] |
Knisz J, Eckert R, Gieg L M, et al. Microbiologically influenced corrosion-more than just microorganisms [J]. FEMS Microbiol. Rev., 2023, 47: fuad041
|
[7] |
Li Z, Huang L Y, Hao W K, et al. Accelerating effect of pyocyanin on microbiologically influenced corrosion of 304 stainless steel by the Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2022, 146: 108130
|
[8] |
Salgar-Chaparro S J, Lepkova K, Pojtanabuntoeng T, et al. Microbiologically influenced corrosion as a function of environmental conditions: a laboratory study using oilfield multispecies biofilms [J]. Corros. Sci., 2020, 169: 108595
|
[9] |
Ma Y, Zhang Y M, Zhang R Y, et al. Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: a brief view [J]. Appl. Microbiol. Biotechnol., 2020, 104: 515
doi: 10.1007/s00253-019-10184-8
pmid: 31807887
|
[10] |
Li Z X, Lv M Y, Du M. Effect of combined potential polarization on corrosion of X65 steel in seawater inoculated with iron oxiding bacteria [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 211
|
|
李振欣, 吕美英, 杜 敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 211
doi: 10.11902/1005.4537.2021.106
|
[11] |
Kilbane J. Effect of sample storage conditions on oilfield microbiological samples [A]. Corrosion 2014 [C]. San Antonio, Texas, USA, 2014: 3788
|
[12] |
Pots B F M, Kapusta S D, John R C, et al. Improvements on de Waard-Milliams corrosion prediction and applications to corrosion management [A]. Corrosion 2002 [C]. Denver, Colorado, 2002: 02235
|
[13] |
Marciales A, Peralta Y, Haile T, et al. Mechanistic microbiologically influenced corrosion modeling-A review [J]. Corros. Sci., 2019, 146: 99
doi: 10.1016/j.corsci.2018.10.004
|
[14] |
Batmanghelich F, Li L, Seo Y. Influence of multispecies biofilms of Pseudomonas aeruginosa and Desulfovibrio vulgaris on the corrosion of cast iron [J]. Corros. Sci., 2017, 121: 94
|
[15] |
Beese P, Venzlaff H, Srinivasan J, et al. Monitoring of anaerobic microbially influenced corrosion via electrochemical frequency modulation [J]. Electrochim. Acta, 2013, 105: 239
|
[16] |
Castaneda H, Benetton X D. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions [J]. Corros. Sci., 2008, 50: 1169
|
[17] |
Debuy S, Pecastaings S, Bergel A, et al. Oxygen-reducing biocathodes designed with pure cultures of microbial strains isolated from seawater biofilms [J]. Int. Biodeterior. Biodegrad., 2015, 103: 16
|
[18] |
Malard E, Kervadec D, Gil O, et al. Interactions between steels and sulphide-producing bacteria-corrosion of carbon steels and low-alloy steels in natural seawater [J]. Electrochim. Acta, 2008, 54: 8
|
[19] |
Xia D H, Song S Z, Behnamian Y, et al. Review-electrochemical noise applied in corrosion science: theoretical and mathematical models towards quantitative analysis [J]. J. Electrochem. Soc., 2020, 167: 081507
|
[20] |
Chen S Q, Wang P, Zhang D. Corrosion behavior of copper under biofilm of sulfate-reducing bacteria [J]. Corros. Sci., 2014, 87: 407
|
[21] |
Mansfeld F. The use of electrochemical techniques for the investigation and monitoring of microbiologically influenced corrosion and its inhibition-a review [J]. Mater. Corros., 2003, 54: 489
|
[22] |
Pourbaix M. Applications of electrochemistry in corrosion science and in practice [J]. Corros. Sci., 1974, 14: 25
|
[23] |
Searson P C, Dawson J L. Analysis of electrochemical noise generated by corroding electrodes under open-circuit conditions [J]. J. Electrochem. Soc., 1988, 135: 1908
|
[24] |
Qi Z H, Jiang T, Zhao M J, et al. Research progress on coatings of active control of microbiological contamination for aircraft fuel system [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 821
|
|
戚震辉, 江 涛, 赵茂锦 等. 飞机燃油系统微生物污染主动防治涂层研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 821
doi: 10.11902/1005.4537.2022.287
|
[25] |
Pei Y Y, Guan F, Dong X C, et al. Effect of Desulfovibrio Bizertensis SY-1 on corrosive behavior of metal materials under cathodic polarization [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 345
|
|
裴莹莹, 管 方, 董续成 等. Desulfovibrio Bizertensis SY-1在阴极极化条件下对X70管线钢的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 345
doi: 10.11902/1005.4537.2023.074
|
[26] |
Carvalho M L, Doma J, Sztyler M, et al. The study of marine corrosion of copper alloys in chlorinated condenser cooling circuits: the role of microbiological components [J]. Bioelectrochemistry, 2014, 97: 2
doi: 10.1016/j.bioelechem.2013.12.005
pmid: 24411305
|
[27] |
Liang R X, Aktas D F, Aydin E, et al. Anaerobic biodegradation of alternative fuels and associated biocorrosion of carbon steel in marine environments [J]. Environ. Sci. Technol., 2016, 50: 4844
|
[28] |
Teng F, Guan Y T, Zhu W P. Effect of biofilm on cast iron pipe corrosion in drinking water distribution system: corrosion scales characterization and microbial community structure investigation [J]. Corros. Sci., 2008, 50: 2816
|
[29] |
Kannan P, Su S S, Mannan M S, et al. A review of characterization and quantification tools for microbiologically influenced corrosion in the oil and gas industry: current and future trends [J]. Ind. Eng. Chem. Res., 2018, 57: 13895
|
[30] |
Wu J J, Xu M, Wang P, et al. Impact of nitrate addition on EH40 steel corrosion in natural seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 765
|
|
吴佳佳, 徐 鸣, 王 鹏 等. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 765
|
[31] |
Eckert R B, Skovhus T L. Advances in the application of molecular microbiological methods in the oil and gas industry and links to microbiologically influenced corrosion [J]. Int. Biodeterior. Biodegrad., 2018, 126: 169
|
[32] |
Gutarowska B, Celikkol-Aydin S, Bonifay V, et al. Metabolomic and high-throughput sequencing analysis-modern approach for the assessment of biodeterioration of materials from historic buildings [J]. Front. Microbiol., 2015, 6: 979
doi: 10.3389/fmicb.2015.00979
pmid: 26483760
|
[33] |
Chen S Q, Hou R Z, Zhang X, et al. The study of riboflavin-mediated indirect electron transfer process in corrosion of EH40 steel induced by Methanococcus maripaludis [J]. Corros. Sci., 2023, 225: 111567
|
[34] |
Pu Y A, Chen S G, Man C, et al. Investigation on the stress corrosion cracking behavior and mechanism of 90/10 copper-nickel alloy under the cooperative effect of tensile stress and Desulfovibrio vulgaris [J]. Corros. Sci., 2023, 225: 111617
|
[35] |
Sharma M, Liu H W, Chen S Q, et al. Effect of selected biocides on microbiologically influenced corrosion caused by Desulfovibrio ferrophilus IS5 [J]. Sci. Rep., 2018, 8: 16620
|
[36] |
Wang D, Yang C T, Zheng B R, et al. Microbiologically influenced corrosion of CoCrFeMnNi high entropy alloy by sulfate-reducing bacterium Desulfovibrio vulgaris [J]. Corros. Sci., 2023, 223: 111429
|
[37] |
Wan H H, Zhang T S, Xu Z X, et al. Effect of sulfate reducing bacteria on the galvanic corrosion behavior of X52 carbon steel and 2205 stainless steel bimetallic couple [J]. Corros. Sci., 2023, 212: 110963
|
[38] |
Kagarise C, Vera J R, Eckert R B. The importance of deposit characterization in mitigating UDC and MIC in dead legs [A]. Corrosion 2017 [C]. New Orleans, Louisiana, USA, 2017: 9128
|
[39] |
Haruna K, Obot I B, Saleh T A. Infrared spectroscopy in corrosion research [A]. KayaS, ObotIB, ÖzkirD, et al. Corrosion Science: Theoretical and Practical Applications [M]. New York: Apple Academic Press, 2023: 261
|
[40] |
Dwivedi D, Lepková K, Becker T. Carbon steel corrosion: a review of key surface properties and characterization methods [J]. RSC Adv., 2017, 7: 4580
|
[41] |
Beech I B. Corrosion of technical materials in the presence of biofilms-current understanding and state-of-the art methods of study [J]. Int. Biodeterior. Biodegrad., 2004, 53: 177
|
[42] |
Cui T Y, Qian H C, Lou Y T, et al. Single-cell level investigation of microbiologically induced degradation of passive film of stainless steel via FIB-SEM/TEM and multi-mode AFM [J]. Corros. Sci., 2022, 206: 110543
|
[43] |
Steele A, Goddard D T, Beech I B. An atomic force microscopy study of the biodeterioration of stainless steel in the presence of bacterial biofilms [J]. Int. Biodeterior. Biodegrad., 1994, 34: 35
|
[44] |
Surman S B, Walker J T, Goddard D T, et al. Comparison of microscope techniques for the examination of biofilms [J]. J. Microbiol. Methods, 1996, 25: 57
|
[45] |
Wei B X, Xu J, Gao L Q, et al. Nanosecond pulsed laser-assisted modified copper surface structure: Enhanced surface microhardness and microbial corrosion resistance [J]. J. Mater. Sci. Technol., 2022, 107: 111
doi: 10.1016/j.jmst.2021.08.023
|
[46] |
Gao Q Y, Zeng W G, Wang H, et al. Effect of fluid scouring on sulfate reducting bacteria induced corrosion of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1087
|
|
高秋英, 曾文广, 王 恒 等. 流体冲刷作用对SRB的腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1087
doi: 10.11902/1005.4537.2022.321
|
[47] |
Xu D K, Xia J, Zhou E Z, et al. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2017, 113: 1
|
[48] |
Yazdi M, Khan F, Abbassi R, et al. A review of risk-based decision-making models for microbiologically influenced corrosion (MIC) in offshore pipelines [J]. Reliab. Eng. Syst. Safe., 2022, 223: 108474
|
[49] |
Zeng Y, Qi P, Chen J W, et al. Target aided self-assembly of DNA hyperbranched nanostructures for bacterial 16 S ribosomal DNA gene SERS detection [J]. Sensor. Actuat. Chem., 2023, 396: 134423
|
[50] |
Zeng Y, Qi P, Zhou Y N, et al. Multi pathogenic microorganisms determination using DNA composites-encapsulated DNA silver nanocluster/graphene oxide-based system through rolling cycle amplification [J]. Microchim. Acta, 2022, 189: 403
|
[51] |
Zeng Y, Qi P, Wang Y W, et al. DNA pom-pom nanostructure as a multifunctional platform for pathogenic bacteria determination and inactivation [J]. Biosens. Bioelectron., 2021, 177: 112982
|
[52] |
Qi P, Wan Y, Zeng Y, et al. Rapid detection methods for sulfate-reducing bacteria in marine environments [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 387
|
|
戚 鹏, 万 逸, 曾 艳 等. 海洋环境中硫酸盐还原菌的快速测定方法研究 [J]. 中国腐蚀与防护学报, 2019, 39: 387
|
[53] |
Wang Y W, Zhang D, Sun Y, et al. Precise localization and simultaneous bacterial eradication of biofilms based on nanocontainers with successive responsive property toward pH and ATP [J]. ACS Appl. Mater. Interfaces, 2023, 15: 8424
|
[54] |
Wang Y W, Zhang D, Zeng Y, et al. Selective ATP detection via activation of MoS2-based artificial nanozymes inhibited by ZIF-90 nanoparticles [J]. ACS Appl. Nano Mater., 2021, 4: 11545
|
[55] |
Wang Y W, Zhang D, Zeng Y, et al. Target-modulated competitive binding and exonuclease I-powered strategy for the simultaneous and rapid detection of biological targets [J]. Biosens. Bioelectron., 2022, 198: 113817
|
[56] |
Wang Y W, Qi P, Zhang D, et al. Dual-signal viscosity flow paper sensor for ATP detection based on bio-recognition and nanozyme activity regulation of ZIF-90 [J]. Chem. Eng. J., 2024: 148590
|
[57] |
Beech I B, Sunner J. Biocorrosion: towards understanding interactions between biofilms and metals [J]. Curr. Opin. Biotechnol., 2004, 15: 181
|
[58] |
Videla H A, Herrera L K. Microbiologically influenced corrosion: looking to the future [J]. Int. Microbiol., 2005, 8: 169
pmid: 16200495
|
[59] |
Maxwell S. Predicting microbially influenced corrosion (MIC) in seawater injection systems [A]. SPE International Oilfield Corrosion Symposium [C]. Aberdeen, UK, 2006
|
[60] |
Sørensen K B, Thomsen U S, Juhler S, et al. Cost efficient MIC management system based on molecular microbiological methods [A]. Corrosion 2012 [C]. Salt Lake City, Utah, 2012: 1111
|
[61] |
Larsen J, Sørense K B, Juhler S, et al. The application of molecular microbiological methods for early warning of MIC in pipelines [A]. CORROSION 2013 [C]. Orlando, Florida, 2013: 2029
|
[62] |
Hong H P. Application of the stochastic process to pitting corrosion [J]. Corrosion, 1999, 55: 10
|
[63] |
Adumene S, Adedigba S, Khan F, et al. An integrated dynamic failure assessment model for offshore components under microbiologically influenced corrosion [J]. Ocean Eng., 2020, 218: 108082
|
[64] |
Peng C G, Suen S Y, Park J K. Modeling of anaerobic corrosion influenced by sulfate-reducing bacteria [J]. Water Environ. Res., 1994, 66: 707
|
[65] |
von Wolzogen Kühr C A H, Van der Vlugt L S. The graphitization of cast iron as an electrobiochemical process in anaerobic soil [J]. Water, 1934, 18: 147
|
[66] |
Al‐Darbi M M, Agha K, Islam M R. Comprehensive modelling of the pitting biocorrosion of steel [J]. Can. J. Chem. Eng., 2005, 83: 872
|
[67] |
Melchers R E, Wells T. Models for the anaerobic phases of marine immersion corrosion [J]. Corros. Sci., 2006, 48: 1791
|
[68] |
Afanasyev M, van Paassen L, Heimovaara T. A numerical model of controlled bioinduced mineralization in a porous medium to prevent corrosion [A]. EGU General Assembly Conference Abstracts [C]. 2013: EGU2013
|
[69] |
Haile T, Teevens P, Zhu Z. Sulphate-reducing bacteria growth kinetics-based microbiologically influenced corrosion predictive model [J]. J. Pipeline Eng., 2015, 14: 259
|
[70] |
Gu T Y, Zhao K L, Nesic S. A new mechanistic model for MIC based on a biocatalytic cathodic sulfate reduction theory [A]. Corrosion 2009 [C]. Atlanta, Georgia, 2009: 09390
|
[71] |
Gu T Y. Theoretical modeling of the possibility of acid producing bacteria causing fast pitting biocorrosion [J]. J. Microb. Biochem. Technol., 2014, 6: 68
|
[72] |
Xu D K, Li Y C, Gu T Y. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria [J]. Bioelectrochemistry, 2016, 110: 52
doi: 10.1016/j.bioelechem.2016.03.003
pmid: 27071053
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|