Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (6): 1641-1648    DOI: 10.11902/1005.4537.2024.135
Current Issue | Archive | Adv Search |
Coating Defect Detection Based on Electromagnetic Induction Infrared Thermal Imaging Technology
ZHAO Yan1, NIAN Lei2, WANG Yu2, TANG Xiao1()
1. School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, China
2. Rizhao Shihua Crude Oil Terminal Co., Ltd., Rizhao 276800, China
Cite this article: 

ZHAO Yan, NIAN Lei, WANG Yu, TANG Xiao. Coating Defect Detection Based on Electromagnetic Induction Infrared Thermal Imaging Technology. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1641-1648.

Download:  HTML  PDF(9470KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Usually, early failures of anti-corrosion coating for marine engineering equipment are difficult to be detected in time, and indeed such failures are potential safety hazard. Herein, defects in coatings on steel plate were detected via electromagnetic induction infrared thermal imaging system, aiming in realizing non-destructive visual detection of coating defects. Meanwhile, qualitative evaluation criteria for different type of coating defects were proposed, according to the comprehensive assessment of the acquired infrared thermal images in terms of the color brightness difference throughout the image, the temperature difference between defects and their adjacent area, as well as the shape of defects in the acquired infrared thermal images. The established criteria of coating defect types may be used to identify defects occurred in coatings during their service process in marine environment, and the reliability of the criteria is verified by the Kelvin probe measured potential distribution and visible light images of the relevant coatings.

Key words:  electromagnetic induction infrared thermal imaging      coating metal      defect detection      evaluation criteria     
Received:  24 April 2024      32134.14.1005.4537.2024.135
ZTFLH:  TG172  
Fund: Technology Development Project in West Coast New Area of Qingdao(05T2208002)
Corresponding Authors:  TANG Xiao, E-mail: tangxiao@upc.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.135     OR     https://www.jcscp.org/EN/Y2024/V44/I6/1641

Fig.1  Types of coating defects: (a) coating scratches, (b) undercoating corrosion, (c) coating bubbling, (d) coating stripping, (e) coating rupture corrosion products exposed
Fig.2  Coated metal sample with defects
Fig.3  Close array of electrodes (a) and schematic diagram of electrolytic cell (b)
Fig.4  Coating/metal surface scratch defect chart: (a) electrode array, (b) single electrode
Fig 5  Visible light image and infrared thermal image of defective coated steel plate
Fig.6  Temperature difference map for different defect types
Defect colorΔT / ℃Defect shapeDefect type
Bright area0.5 ~ 1Irregular regionCorrosion cracking of coating
Bright area0 ~ 0.5Irregular regionMetal corrosion under coating
Dark space< 1.5roundnessCoating bubbling
Dark space> 2Circular/irregular areasCoating stripping
Dark space> 2linearCoating scratch
Table 1  Table of qualitatively judging criteria for coating defect types
Fig.7  Image of coating corrosion failure in Marine environment: (a) infrared thermal image, (b) kelvin potential profile, (c) visible light images
Fig.8  Morphology of the electrode after removing the coating
Fig.9  Corresponding diagram of coating defect corrosion state in infrared thermal image and visible image: (a) infrared thermograms, (b) visible light image of electrode surface on the 9th d of seawater immersion, (c) visible light image of electrode surface on the 18th d of seawater immersion
Fig.10  Electrochemical impedance spectra of electrodes in different regions: (a) region 1, (b) region 2
Fig.11  Equivalent circuit diagram of different regions: (a) region 1, (b) region 2
RegionRpoRfRctCcl
Ω·cm2Ω·cm2Ω·cm2F·cm-2
1-4.32 × 1031.86 × 1042.82 × 10-5
25.08 × 1041.75 × 1051.13 × 1064.14 × 10-6
Table 2  Fitting results of electrode impedance in different regions
1 Zhao Z Y, Wang J. Progresses in cathodic delamination of organic coatings from metals [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 116
(赵增元, 王 佳. 有机涂层阴极剥离作用研究进展 [J]. 中国腐蚀与防护学报, 2008, 28: 116)
2 Hammer P, dos Santos F C, Cerrutti B M, et al. Carbon nanotube-reinforced siloxane-PMMA hybrid coatings with high corrosion resistance [J]. Prog. Org. Coat., 2013, 76: 601
3 Xu Y X, Yan C W, Gao Y M, et al. Underfilm corrosion of metals and failure of organic coatings in atmosphere [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 249
(徐永祥, 严川伟, 高延敏 等. 大气环境中涂层下金属的腐蚀和涂层的失效 [J]. 中国腐蚀与防护学报, 2002, 22: 249)
4 Bian J. The research developments in adhesive force between organic coating and metal substrate and pretreatments to metal surface [J]. Shandong Mach., 2004, (1): 25
(边 洁. 有机涂层附着力与金属表面预处理研究的新进展 [J]. 山东机械, 2004, (1): 25)
5 Li Q, Li J Y, Sun M J, et al. Performance degradation of three coatings in simulated tropical marine atmospheric environment [J]. Environ. Technol., 2023, 41(3): 11
(李 茜, 李景育, 孙茂钧 等. 三种涂层在模拟热带海洋大气环境中的性能退化研究 [J]. 环境技术, 2023, 41(3): 11)
6 Cai G Y, Zhang D P, Zhao W H, et al. Research advances of protective performance and failure evaluation for organic coatings [J]. Corros. Prot., 2017, 38: 657
(蔡光义, 张德平, 赵苇杭 等. 有机涂层防护性能与失效评价研究进展 [J]. 腐蚀与防护, 2017, 38: 657)
7 Liu B. The status and progress of nondestructive measurement technology for metal corrosion under coating [J]. Shanghai Coat., 2012, 50(5): 53
(刘 斌. 涂层下金属腐蚀无损检测技术现状与进展 [J]. 上海涂料, 2012, 50(5): 53)
8 Zhang C Z, Jiang W, Li S J, et al. Recent research progress of marine anticorrosive coatings [J]. Corros. Sci. Prot. Technol., 2016, 28: 269
(张超智, 蒋 威, 李世娟 等. 海洋防腐涂料的最新研究进展 [J]. 腐蚀科学与防护技术, 2016, 28: 269)
doi: 10.11903/1002.6495.2015.221
9 Cao L W, Zhang S, Shao S S, et al. Progress of emergency maintenance equipment for pressure pipeline leakage accident [J]. China Spec. Equip. Saf., 2022, 38(11): 8
(曹逻炜, 张 硕, 邵珊珊 等. 压力管道泄漏事故应急维抢修装备技术进展 [J]. 中国特种设备安全, 2022, 38(11): 8)
10 Wang W J, Han J C, Mao Y, et al. Research progress on monitoring techniques for corrosion under insulating layer [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 22
(王伟杰, 汉继程, 毛 阳 等. 保温层下腐蚀监检测技术研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 22)
doi: 10.11902/1005.4537.2022.039
11 Lv J, Yue Q X, Ding R, et al. Intelligent anti-corrosion and corrosion detection coatings based on layered supramolecules intercalated by fluorescent off-on probes [J]. J. Taiwan Inst. Chem. Eng., 2021, 118: 309
12 Hu Y F, Cao X K, Ma X Z, et al. Fluorescent nanofiller modified epoxy coatings for visualization of coating degradation [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 460
(胡云飞, 曹祥康, 马小泽 等. 采用荧光纳米填料改性环氧涂层实现缺陷可视化 [J]. 中国腐蚀与防护学报, 2023, 43: 460)
doi: 10.11902/1005.4537.2022.202
13 Ma B Q, Zhou Z G. Progress and development trends of composite structure evaluation using noncontact nondestructive testing techniques in aviation and aerospace industries [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 1787
(马保全, 周正干. 航空航天复合材料结构非接触无损检测技术的进展及发展趋势 [J]. 航空学报, 2014, 35: 1787)
doi: 10.7527/S1000-6893.2013.0490
14 Schönberger A, Virtanen S, Giese V, et al. Non-destructive detection of corrosion applied to steel and galvanized steel coated with organic paints by the pulsed phase thermography [J]. Mater. Corros., 2012, 63: 195
15 Han J S, Park J H. Detection of corrosion steel under an organic coating by infrared photography [J]. Corros. Sci., 2004, 46: 787
16 Yang R Z, He Y Z, Zhang H, et al. Through coating imaging and nondestructive visualization evaluation of early marine corrosion using electromagnetic induction thermography [J]. Ocean Eng., 2018, 147: 277
17 He Y Z, Tian G Y, Cheng L, et al. Parameters influence in steel corrosion evaluation using PEC thermography [A]. The 17th International Conference on Automation and Computing [C]. Huddersfield, UK: IEEE, 2011: 255
18 Kopf L F, Tighe R C. Automated detection and quantification of the onset of undercoating corrosion using pulsed thermography [J]. Mater. Corros., 2023, 74: 777
19 Yang S. Research on heat source model and numerical simulation of high frequency induction heating forming [J]. Dev. Appl. Mater., 2015, 30(4): 20
(杨 澍. 高频电磁感应加热成形热源模型建立及数值模拟研究 [J]. 材料开发与应用, 2015, 30(4): 20)
20 Zhang H H. Principle and Application of nondestructive detection technology of infrared thermal imaging [J]. Sci. Technol. Inform., 2013, (35): 181
(张慧慧. 红外热成像无损检测技术原理及其应用 [J]. 科技信息, 2013, (35): 181)
[1] YU Zheng, CHEN Minghui, WANG Jinlong, YANG Shasha, WANG Fuhui. Influence of Alkali Metal Sulfate- and Chloride-salts Content in Artificial Coal Ash on Corrosion Behavior of HR3C Steels With and Without Aluminizing[J]. 中国腐蚀与防护学报, 2024, 44(6): 1389-1398.
[2] ZHANG Zhuanli, DAI Hailong, ZHANG Zhe, SHI Shouwen, CHEN Xu. Stress Corrosion Cracking Behavior of 316L in Hydrofluoric Acid Solution[J]. 中国腐蚀与防护学报, 2024, 44(6): 1633-1640.
[3] WANG Chengtao, SHEN Guanyi, XU Shaoyi, LI Wei, WANG Yuqiao, WANG Shuchen, WEN Dongdong, LI Pengyu. Numerical Simulation of Corrosion of Buried Metal Pipeline Under AC Interference Based on Physical Field Coupling[J]. 中国腐蚀与防护学报, 2024, 44(6): 1573-1580.
[4] LU Tianai, JIANG Wenhao, WU Wei, ZHANG Junxi. Surface Modification of Corrosion-resistant Cast Iron Based on Functional Requirements of Grounding Materials[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[5] ZHANG Yani, WANG Simin, FAN Bing. Corrosion and Passivation Behavior of TC4 Ti-alloy in a Simulated Downhole Liquid in High-temperature and High-pressed O2 + CO2 Environment[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[6] XU Zhiyu, HU Qian, HUANG Feng, LIU Jing, LU Xianzhong. Effect of Crevice Geometry on Chemical Environment of Crevice Solution and Corrosion Behavior of 2205 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1581-1588.
[7] CAO Fuyang, WANG Haoquan, JI Qian, DING Hengnan, YUAN Zhizhong, LUO Rui. Tribo-corrosion Performance of Atmospheric Plasma Sprayed FeCoCrNiMn High Entropy Alloy Coatings[J]. 中国腐蚀与防护学报, 2024, 44(6): 1529-1537.
[8] LIU Yuanhai, LI Yuzhu, YU Dazhao, MU Xianlian, LIU Jie. Research Progress on Corrosion Failure Behavior of Printed Circuit Board in a Service Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1145-1156.
[9] FENG Shaoyu, ZHOU Zhaohui, YANG Lanlan, QIAO Yanxin, WANG Jinlong, WANG Fuhui. Electrochemical and Wear Behavior of TC4 Alloy in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1243-1254.
[10] SUN Shibin, SHI Changwei, WANG Dongsheng, CHANG Xueting, LI Mingchun. Low Temperature Wear and Corrosion Resistance of Epoxy Based Polar Marine Ice Breaking Coatings[J]. 中国腐蚀与防护学报, 2024, 44(5): 1177-1188.
[11] LI Xin, WEI Boxin, LU Yanghui, SUN Chen, YU Wentao, XU Meng, LIU Wei. Research Progress on Hydrogen Damage Mechanism of Pipeline Steel in Contact with Hydrogen Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1125-1133.
[12] DU Xin, DU Qian, SU Zhengxiong, GUO Shaoqiang, WANG Sheng. Intergranular Corrosion of High Temperature Ni-based Alloy GH3535 Induced by Fission Product Tellurium[J]. 中国腐蚀与防护学报, 2024, 44(5): 1157-1163.
[13] . Study on the cyclic oxidation behavior of TiAl alloy with electrodeposited SiO2 coating[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[14] . Corrosion Behavior and Hydrothermal Aging Mechanism of Epoxy Primer for High-speed Train[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[15] . Effect of self-generated magnetic field on the atmospheric corrosion behavior of copper[J]. 中国腐蚀与防护学报, 0, (): 0-0.
No Suggested Reading articles found!