Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (1): 244-248    DOI: 10.11902/1005.4537.2024.231
Current Issue | Archive | Adv Search |
Formation Mechanism of Residue Water Stains on TC4 Ti-alloy Surface and Conter-measures
LI Hanye1, ZHANG Zhichao1, WANG Qunchang2, GU Yan1(), CHEN Zehao2, YANG Shasha2, MEI Feiqiang1
1 AECC Shenyang Liming Aeroengine Corporation Limited Technology Center, Shenyang 110043, China
2 Corrosion and Protection Center, Northeastern University, Shenyang 110819, China
Cite this article: 

LI Hanye, ZHANG Zhichao, WANG Qunchang, GU Yan, CHEN Zehao, YANG Shasha, MEI Feiqiang. Formation Mechanism of Residue Water Stains on TC4 Ti-alloy Surface and Conter-measures. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 244-248.

Download:  HTML  PDF(5826KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

It is often noted that there exist a number of residue water-stains on the alloy surface after removing carbon deposits on TC4 Ti-alloy surface by alkaline-washing and subsequent high-temperature water-washing, which can seriously interfere the subsequent fluorescence analysis. Herein, the electrochemical corrosion behavior of TC4 alloy in 10% (mass fraction) NaOH solution at various temperatures is assessed via electrochemical workstation, optical microscopy and SEM+EDS, aiming in understanding the formation mechanism of the residue water stains during the removal process of carbon deposits. The results show that with the increasing alkaline solution temperature, the corrosion rate of TC4 alloy accelerates.Results of OM and SEM+EDS characterization show that the emerge of residue water-stains may be closely originated from spots where the existing passivation film was corroded by the concentrated residue alkaline solutions on the alloy surface. Furthermore, after being cleaned with alkali solution of the test parts of the alloy, then they are comparatively cleaned with deionized water and tap water respectively. It shows that with the increase of water temperature, the residue water-stains can be clearly observed on the surface of the test parts. Fortunately, the utilization of deionized water instead of tap water can effectively avoid the occurrence of the residue water-stains.

Key words:  aero-engine      washing marks      corrosion protection      Ti-alloy     
Received:  29 July 2024      32134.14.1005.4537.2024.231
ZTFLH:  TG172  
Fund: Fundamental Research Funds for the Central Universities(N2302007)
Corresponding Authors:  GU Yan, E-mail: guyan19811102@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.231     OR     https://www.jcscp.org/EN/Y2025/V45/I1/244

Fig.1  Macroscopic morphology of a TC4 alloy parts after washing with 10%NaOH solution
Temperature / oCEcorr / VIcorr / A·cm-2
50-0.9936.381 × 10-6
60-0.9621.673 × 10-5
70-1.0261.821 × 10-5
80-1.0672.219 × 10-5
Table 1  Fitting results of polarization curves of TC4 alloy in 10%NaOH solution at different temperatures
Fig.2  Polarization curves of TC4 alloy in 10%NaOH solution at 50~80 oC
Fig.3  Macroscopic photo (a) and optical microscope morphology (b) of residual traces on TC4 alloy after washing
Fig.4  Surface morphologies (a, c) and element analysis results (b, d) of the marked zones for residual trace and matrix after alkaline washing, respectively
Fig.5  Macro-morphologies of alkaline washed TC4 alloy after cleaning with tap water (a, c, e) and deionized water (b, d, f) at 55 oC (a, b), 65 oC (c, d) and 75 oC (e, f)
1 Wang L. Insight into behavior and mechanism of passivation of titanium and titanium allosy [D]. Beijing: University of Science and Technology Beijing, 2019
王 璐. 钛/钛合金钝化行为与机理研究 [D]. 北京: 北京科技大学, 2019
2 Simonelli M, Tse Y Y, Tuck C. The formation of α + β microstructure in as-fabricated selective laser melting of Ti-6Al-4V [J]. J. Mater. Res., 2014, 29: 2028
3 Liu Q X, Liu Y, Gao K. Research progress and application of titanium alloys [J]. Aerosp. Manuf. Technol., 2011, (4): 45, 55
刘奇先, 刘 杨, 高 凯. 钛合金的研究进展与应用 [J]. 航天制造技术, 2011, (4): 45, 55
4 Gai X, Bai Y, Li J, et al. Electrochemical behaviour of passive film formed on the surface of Ti-6Al-4V alloys fabricated by electron beam melting [J]. Corros. Sci., 2018, 145: 80
5 Milošev I, Kosec T, Strehblow H H. XPS and EIS study of the passive film formed on orthopaedic Ti-6Al-7Nb alloy in Hank's physiological solution [J]. Electrochim. Acta, 2008, 53: 3547
6 Qin Z, Pang X L, Yan Y, et al. Passive film-induced stress and mechanical properties of α-Ti in methanol solution [J]. Corros. Sci., 2014, 78: 287
7 Jáquez-Muñoz J M, Gaona-Tiburcio C, Chacón-Nava J, et al. Electrochemical corrosion of titanium and titanium alloys anodized in H2SO4 and H3PO4 solutions [J]. Coatings, 2022, 12: 325
8 Seyeux A, Maurice V, Marcus P. Oxide film growth kinetics on metals and alloys: I. Physical model [J]. J. Electrochem. Soc., 2013, 160: C189
9 Zhang F, Du Y Q, Zhu X H, et al. Study on the mechanism of porosity formation and laser fusion welding technology of commercial pure titanium [J]. J. Jiangsu Univ. Sci. Technol. (Nat. Sci. Ed.), 2018, 32(1): 40
张 峰, 杜永勤, 祝晓辉 等. 工业纯钛激光自熔焊接工艺及气孔形成机理研究 [J]. 江苏科技大学学报(自然科学版), 2018, 32(1): 40
10 Gu J, Liu T Q. Corrosion performance of titaniun alloy [J]. Mater. Prot., 2000, 33(12): 4
顾 捷, 刘天晴. SST-861钛合金阳极的腐蚀特性及钝化膜表征 [J]. 材料保护, 2000, 33(12): 4
11 Myers J R, Lin Y X. Corrosion characteristics and applications of titanium and titanium alloys [J]. Rare Metal Mater. Eng., 1985, (5): 51
Myers J R, 林永新. 钛及钛合金的腐蚀特性和应用 [J]. 稀有金属工程与材料, 1985, (5): 51
12 Sun J, Guo K, Yang B. Review on cutting tool and processing technology for titanium alloy aviation components [J]. Aeronaut. Manuf. Technol., 2021, 64(16): 74
孙 杰, 国 凯, 杨 斌. 钛合金航空结构件加工刀具与工艺技术研究现状 [J]. 航空制造技术, 2021, 64(16): 74
13 Pang X T, Xiong Z H, Sun J H, et al. Enhanced strength-ductility synergy in laser additive manufactured TC4 titanium alloy by grain refinement [J]. Mater. Lett., 2022, 326: 132949
14 Ren Z H, Li Z H, Zhou S H, et al. Study on surface properties of Ti-6Al-4V titanium alloy by ultrasonic rolling [J]. Simul. Model. Pract. Theory, 2022, 121: 102643
15 Lavrys S, Pohrelyuk I, Veselivska H, et al. Corrosion behavior of near-alpha titanium alloy fabricated by additive manufacturing [J]. Mater. Corros., 2022, 73: 2063
16 Polyakov S G, Blashchuk V E. Evaluation of the stress corrosion cracking susceptibility of titanium alloys and welded joints [J]. Prot. Met., 1999, 35: 454
17 Hendricks O L, Meng A, Scheuermann A G, et al. Atomic layer deposited transition metal oxide-titania alloys as corrosion resistant schottky contacts for silicon photoanodes [J]. ECS Meet. Abstr., 2017, MA2017-02: 1869
18 Qiao Y X, Xu D K, Wang S, et al. Corrosion and tensile behaviors of Ti-4Al-2V-1Mo-1Fe and Ti-6Al-4V titanium alloys [J]. Metals, 2019, 9: 1213
[1] LIU Guoqiang, FENG Changjie, XIN Li, MA Tianyu, CHANG Hao, PAN Yuxuan, ZHU Shenglong. Preparation and Microstructure of Diffused Ti-Al-Si Coatings on Ti-6Al-4V Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 69-80.
[2] ZHANG Yani, WANG Simin, FAN Bing. Corrosion and Passivation Behavior of TC4 Ti-alloy in a Simulated Downhole Liquid in High-temperature and High-pressed O2 + CO2 Environment[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[3] WU Jinyi, CHAI Ke, LI Xiaolin, SHANG Jin, LI Qiang, WU Yaohua. Effects of Surrounding Factors on Settlement of Balanus Reticulatus Cyprids in Artificial Seawaters[J]. 中国腐蚀与防护学报, 2024, 44(5): 1316-1322.
[4] WANG Ting, GAO Kun, ZHONG Sainan, ZHANG Zhao. Research Progress on Hydrophobic Modification of Polyurethane Coatings[J]. 中国腐蚀与防护学报, 2024, 44(4): 823-834.
[5] LI Jiancheng, ZHAO Jing, XIE Xin, WANG Jinlong, CHEN Minghui, WANG Fuhui. Preparation of Phosphate Coatings on Ti-alloy and Their Corrosion Behavior Beneath Salt-mixture in Water Vapor Flow at 650oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 159-166.
[6] DONG Hongmei, LI Baoyi, RAN Boyuan, WANG Qi, NIU Yulan, DING Lifeng, QIANG Yujie. Corrosion Inhibition Mechanism of the Eco-friendly Corrosion Inhibitor Linagliptin on Copper in Sulfuric Acid[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[7] NI Yumeng, YU Yingjie, YAN Hui, WANG Wei, LI Ying. Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[8] LIAN Yancheng, LIANG Fuyuan, HE Jianchao, LI Jin, WU Junwei, LENG Xuesong. Research Progress on Preparation Process of Superhydrophobic Polytetrafluoroethylene[J]. 中国腐蚀与防护学报, 2023, 43(2): 231-241.
[9] LIU Haochen, FAN Lin, ZHANG Haibing, WANG Yingying, TANG Junlei, BAI Xuehan, SUN Mingxian. Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[10] WEN Jiaxin, ZHANG Xin, LIU Yunxia, ZHOU Yongfu, LIU Kejian. Preparation and Performance of Smart Coating Doped with Nanocontainers of BTA@MSNs-SO3H-PDDA for Anti-corrosion of Carbon Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
[11] LIU Xing, RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, LONG Bin. Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[12] YANG Sheng, ZHANG Huijie, XIANG Wuyuan, OUYANG Tao, XIAO Fen, ZHOU Hui. Effect of Post Surface Treatment of Micro-arc Oxidation Films/TC4 Ti-alloy on Their Morphology and Galvanic Corrosion Performance[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[13] LI Guangquan, LI Guangfang, WANG Junqiang, ZHANG Tiansui, ZHANG Fei, JIANG Ximin, LIU Hongfang. Microbiologically Influenced Corrosion Mechanism and Protection of Offshore Pipelines[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[14] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[15] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
No Suggested Reading articles found!