Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 529-539    DOI: 10.11902/1005.4537.2023.180
Current Issue | Archive | Adv Search |
Review on Relationship Between Hot Functional Test Water Chemistry and Corrosion Behavior of Related Component Materials in Pressurized Water Reactor Nuclear Power Plants
PENG Liyuan1,2, WU Xinqiang1(), ZHANG Ziyu1, TAN Jibo1
1. CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Cite this article: 

PENG Liyuan, WU Xinqiang, ZHANG Ziyu, TAN Jibo. Review on Relationship Between Hot Functional Test Water Chemistry and Corrosion Behavior of Related Component Materials in Pressurized Water Reactor Nuclear Power Plants. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 529-539.

Download:  HTML  PDF(1872KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hot functional test (HFT) involves a number of pre-operational exercises without fuel performed to confirm the operability of newly constructed nuclear power plants in the conditions expected during both normal and off-normal operations of a pressurized water reactor (PWR). HFT water chemistry provides an opportunity to produce a stable and protective oxide scale on the key equipment in the primary coolant of PWR which can greatly reduce the corrosion rate of the substrate, the release of the metal ions and the incorporation of activated corrosion products during the subsequently long-term normal operations, and furthermore, relief the dose rate and decrease the corrosion rates of the related component materials for the nuclear power plants. HFT water chemistry adopted in PWR nuclear power plants and the evaluation methods for the HFT water chemistry optimization are reviewed in the present work. The effect of boric acid, lithium hydroxide, pHT, dissolved hydrogen and Zn injection on the corrosion behavior of key components materials are analyzed. Challenges and trends for HFT water chemistry optimization in the future are also addressed.

Key words:  PWR nuclear power plants      hot functional test      water chemistry      dose rate      corrosion rate     
Received:  29 May 2023      32134.14.1005.4537.2023.180
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52171085)
Corresponding Authors:  WU Xinqiang, E-mail: xqwu@imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.180     OR     https://www.jcscp.org/EN/Y2024/V44/I3/529

Fig.1  Water chemistry parameters at each stage of the step-by-step HFT process[8]
Fig.2  HFT water chemistry parameters in Tomari Unit 3 and reference plant (the concentration of Zn in Tomari Unit 3 is not shown)[16]
ParameterAP1000 PlantTraditional
Chloride, fluoride, sulfate / µg·L-1≤ 150 (each)≤ 150 (each)
Chemical additionsDuring Heatup PlateauPrior to Heatup
Oxygen / µg·L-1≤ 100≤ 100
Time at NOT/NOP / d1926
Average pH at 292℃7.37.2
Average lithium / mg·L-10.630.51
Average hydrogen / mL·kg-136-
Average zinc / µg·L-146-
Zinc exposure / µg·L-1-months51-
Average boron during cooldown / mg·L-1790-
pHT after cooldown5.0-
Oxygen following H2O2 addition / mg·L-1> 1-
Table 1  Comparison of the typical and Zn-injected step-by-step HFT water chemistry parameters[19]
Fig.3  XPS depth profiles of the pre-films formed on 304H stainless steel (a) and alloy 690 (b) after exposure to HFT water chemistry of the AP1000 plant (Zn-injected step-by-step HFT water chemistry)[19]
Fig.4  Variations of Ni/NiO phase boundary with DH concentration and temperature[36,37]: (a) Attanasiol, (b) Peter
1 Garbett K, Mantell M A. Corrosion product behaviour during hot functional tests and normal operation in cycle 1 at Sizewell B [A]. Water Chemistry of Nuclear Reactor Systems 7, Vol.2 [C]. Bournemouth: British Nuclear Energy Society, 1996: 443
2 Kadoya M. Countermeasures for radiation dose reduction at Ikata unit No.3 [A]. Proceedings of the International Congress of the International Radiation Protection Association [C]. Tokyo, Japan: Japan Health Physics Society, 2000
3 Ito A, Murata K, Yokoyama J. Water chemistry during startup testing at the latest PWR: Genkai unit No.4 [A]. Proceedings of the JAIF International Conference on Water Chemistry in Nuclear Power Plants [C]. Tokyo, Japan: Japan Atomic Industrial Forum, Inc., 1998: 806
4 Nishizawa E. Primary water chemistry improvement for radiation exposure reduction at Japanese PWR plants [C]. Washington, DC: U.S. Nuclear Regulatory Commission, 1995
5 Cubitt M, Garbett K, Lancaster G, et al. Shutdown corrosion product, radiation field and personnel dose development at the Sizewell B PWR [A]. Proceedings of the Xth International Conference on Water Chemistry of Nuclear Reactor Systems [C]. 2004, San Francisco
6 Bates J, Lancaster G, Scrancher M, et al. Corrosion product monitoring during the seventh refuelling outage at Sizewell B [A]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems [C]. Jeju Island, South Korea, 2006
7 Bates C, Garbett K, Hinds K, et al. Development of corrosion product behaviour and radiation fields at the Sizewell B PWR from 1995 to 2008 [J]. VGB PowerTech, 2008, 88: 52
8 Engler N, Brun C, Guillodo M. Optimization of SG tubes prefilming process to reduce nickel release [A]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems [C]. Berlin, 2008: 251
9 Matsuura M, Tsukamoto M, Nishiura H, et al. Application of zinc injection to reduce radiation sources at Takahama unit 4 [A]. Proceedings of the Symposium on Water Chemistry and Corrosion in Nuclear Power Plants in Asia [C]. Tokyo, Japan: Atomic Energy Society of Japan, Division of Water Chemistry, 2009: 309
10 Betova I, Bojinov M, Kinnunen P, et al. Influence of Zn on the oxide layer on AISI 316L(NG) stainless steel in simulated pressurised water reactor coolant [J]. Electrochim. Acta, 2009, 54: 1056
doi: 10.1016/j.electacta.2008.08.040
11 Huang J B, Liu X H, Han E-H, et al. Influence of Zn on oxide films on Alloy 690 in borated and lithiated high temperature water [J]. Corros. Sci., 2011, 53: 3254
doi: 10.1016/j.corsci.2011.06.001
12 Liu X H, Wu X Q, Han E-H. Influence of Zn injection on characteristics of oxide film on 304 stainless steel in borated and lithiated high temperature water [J]. Corros. Sci., 2011, 53: 3337
doi: 10.1016/j.corsci.2011.06.011
13 Liu X H, Wu X Q, Han E-H. Electrochemical and surface analytical investigation of the effects of Zn concentrations on characteristics of oxide films on 304 stainless steel in borated and lithiated high temperature water [J]. Electrochim. Acta, 2013, 108: 554
doi: 10.1016/j.electacta.2013.06.131
14 Zhang S H, Shi R X, Tan Y. Comparison of the solubility of ZnFe2O4, Fe3O4 and Fe2O3 in high temperature water [J]. J. Solution Chem., 2018, 47: 1112
doi: 10.1007/s10953-018-0779-z
15 Hayakawa H, Mino Y, Yamada K, et al. Zinc injection during hot functional test (HFT) in Tomari unit 3 [A]. Proceedings of the Symposium on Water Chemistry and Corrosion in Nuclear Power Plants in Asia [C]. Nagoya, Aichi, Japan, 2009: 206
16 Hitoshi H, Mino Y, Nakahama S, et al. Zinc injection during hot functional test (HFT) in Tomari unit 3 [C]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems. Quebec, Canada, 2010
17 Hayakawa H, Mino Y, Nakahama S, et al. Effects of zinc injection from hot functional test at Tomari unit 3 [A]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems [C]. Paris, France, 2012
18 Jiang L, Meng X B, Wu X D. First application of advanced technical for chemistry control during HFT for AP1000 [A]. Proceedings of the Chinese Nuclear Society [C]. Yantai, 2021
姜 磊, 孟宪波, 吴旭东. AP1000机组热态功能试验化学控制新技术的首次应用 [A]. 中国核学会2021年学术年会 [C]. 烟台, 2021
19 DeVito R L, Buckley D J, Byers W A, et al. Westinghouse experience with AP1000 plant hot functional testing chemistry [A]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems [C]. San Francisco, United States, 2018
20 Tawaki S, Koyasu T, Katayama Y, et al. Improvement of shutdown chemistry for outer oxide layer removal [A]. Proceedings of the JAIF International Conference on Water Chemistry in Nuclear Power Plants [C]. Japan, 1991
21 Zhang Z M, Wang J Q, Han E-H, et al. Analysis of surface oxide films formed in hydrogenated primary water on Alloy 690TT samples with different surface states [J]. J. Mater. Sci. Technol., 2014, 30: 1181
doi: 10.1016/j.jmst.2014.09.002
22 Zhang Z M, Wang J Q, Han E-H, et al. Influence of dissolved oxygen on oxide films of Alloy 690TT with different surface status in simulated primary water [J]. Corros. Sci., 2011, 53: 3623
doi: 10.1016/j.corsci.2011.07.012
23 Zhang L F, Chen K, Wang J M, et al. Effects of zinc injection on stress corrosion cracking of cold worked austenitic stainless steel in high-temperature water environments [J]. Scr. Mater., 2017, 140: 50
doi: 10.1016/j.scriptamat.2017.05.032
24 Betova I, Bojinov M, Karastoyanov V, et al. Effect of water chemistry on the oxide film on Alloy 690 during simulated hot functional testing of a pressurised water reactor [J]. Corros. Sci., 2012, 58: 20
doi: 10.1016/j.corsci.2012.01.002
25 Peng L Y, Zhang Z Y, Tan J B, et al. Effects of boric acid and lithium hydroxide on the corrosion behaviors of 316LN stainless steel in simulating hot functional test high-temperature pressurized water [J]. Corros. Sci., 2022, 198: 110157
doi: 10.1016/j.corsci.2022.110157
26 Betova I, Bojinov M, Karastoyanov V, et al. Optimisation of the water chemistry during hot functional test of a PWR for improved stability of the passive film on Alloy 690 [A]. Proceedings of the Nuclear Plant Chemistry Conference (NPC) [C]. Paris, France, 2012
27 Sun H, Wu X Q, Han E-H, et al. Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304 SS in borated and lithiated high temperature water [J]. Corros. Sci., 2012, 59: 334
doi: 10.1016/j.corsci.2012.03.022
28 Liu X H, Han E-H, Wu X Q. Effects of pH value on characteristics of oxide films on 316L stainless steel in Zn-injected borated and lithiated high temperature water [J]. Corros. Sci., 2014, 78: 200
doi: 10.1016/j.corsci.2013.09.017
29 Wang J Z, Wang J Q, Ming H L, et al. Effect of pH on corrosion behavior of 316L stainless steel in hydrogenated high temperature water [J]. Mater. Corros., 2018, 69: 580
30 Bojinov M, Kinnunen P, Lundgren K, et al. A mixed-conduction model for the oxidation of stainless steel in a high-temperature electrolyte: estimation of kinetic parameters of oxide layer growth and restructuring [J]. J. Electrochem. Soc., 2005, 152: B250
doi: 10.1149/1.1931447
31 Robertson J. The mechanism of high temperature aqueous corrosion of steel [J]. Corros. Sci., 1989, 29: 1275
doi: 10.1016/0010-938X(89)90120-0
32 Robertson J. The mechanism of high temperature aqueous corrosion of stainless steels [J]. Corros. Sci., 1991, 32: 443
doi: 10.1016/0010-938X(91)90125-9
33 Montemor M F, Ferreira M G S, Walls M, et al. Influence of pH on properties of oxide films formed on type 316L stainless steel, Alloy 600, and Alloy 690 in high-temperature aqueous environments [J]. Corrosion, 2003, 59: 11
doi: 10.5006/1.3277531
34 Liao J P, Mao Y L, Jin D S, et al. Laboratory simulation of crud deposition on Zr-alloy fuel cladding in simulated pressurized water reactor primary coolant [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 197
廖家鹏, 毛玉龙, 金德升 等. 锆合金包壳在模拟压水堆一回路冷却剂中的表面污垢沉积行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 197
doi: 10.11902/1005.4537.2022.022
35 Lim D S, Jeon S H, Bae B J, et al. Effect of zinc addition scenarios on general corrosion of Alloy 690 in borated and lithiated water at 330oC [J]. Corros. Sci., 2021, 189: 109627
doi: 10.1016/j.corsci.2021.109627
36 Attanasio S A, Morton D S. Measurement of the nickel/nickel oxide transition in Ni-Cr-Fe alloys and updated data and correlations to quantify the effect of aqueous hydrogen on primary water SCC[R]. Schenectady, NY: Lockheed Martin Corporation, 2003
37 Andresen P L, Hickling J, Ahluwalia A, et al. Effects of hydrogen on stress corrosion crack growth rate of nickel alloys in high-temperature water [J]. Corrosion, 2008, 64: 707
doi: 10.5006/1.3278508
38 Bai J X, Bosch R W, Ritter S, et al. Electrochemical and spectroscopic characterization of oxide films formed on Alloy 182 in simulated boiling water reactor environment: effect of dissolved hydrogen [J]. Corros. Sci., 2018, 133: 204
doi: 10.1016/j.corsci.2018.01.024
39 Nakagawa T, Totsuka N, Terachi T, et al. Influence of dissolved hydrogen on oxide film and PWSCC of Alloy 600 in PWR primary water [J]. J. Nucl. Sci. Technol., 2003, 40: 39
doi: 10.1080/18811248.2003.9715330
40 Jeon S H, Lee E H, Hur D H. Effects of dissolved hydrogen on general corrosion behavior and oxide films of alloy 690TT in PWR primary water [J]. J. Nucl. Mater., 2017, 485: 113
doi: 10.1016/j.jnucmat.2016.12.020
41 Lee H B, Chen J J, Meng S, et al. Characterization of oxide layers formed on type 316 stainless steel exposed to the simulated PWR primary water environment with varying dissolved hydrogen and zinc concentrations [J]. J. Nucl. Mater., 2021, 556: 153193
doi: 10.1016/j.jnucmat.2021.153193
42 Qiu Y B, Shoji T, Lu Z P. Effect of dissolved hydrogen on the electrochemical behaviour of Alloy 600 in simulated PWR primary water at 290oC [J]. Corros. Sci., 2011, 53: 1983
doi: 10.1016/j.corsci.2011.02.020
43 De Araújo Figueiredo C, Bosch R W, Vankeerberghen M. Electrochemical investigation of oxide films formed on nickel alloys 182, 600 and 52 in high temperature water [J]. Electrochim. Acta, 2011, 56: 7871
doi: 10.1016/j.electacta.2011.05.077
44 Xu J, Shoji T, Jang C. The effects of dissolved hydrogen on the corrosion behavior of Alloy 182 in simulated primary water [J]. Corros. Sci., 2015, 97: 115
doi: 10.1016/j.corsci.2015.04.021
45 Nong J, Guo Q, Xu J, et al. Effects of alternating dissolved oxygen and dissolved hydrogen on the corrosion behavior of alloy 52 in high temperature high pressure water [J]. J. Nucl. Mater., 2020, 540: 152396
doi: 10.1016/j.jnucmat.2020.152396
46 Peng Q J, Hou J, Sakaguchi K, et al. Effect of dissolved hydrogen on corrosion of Inconel Alloy 600 in high temperature hydrogenated water [J]. Electrochim. Acta, 2011, 56: 8375
doi: 10.1016/j.electacta.2011.07.032
47 Dong L J, Peng Q J, Zhang Z M, et al. Effect of dissolved hydrogen on corrosion of 316NG stainless steel in high temperature water [J]. Nucl. Eng. Des., 2015, 295: 403
doi: 10.1016/j.nucengdes.2015.08.030
48 Dan T C, Lü Z P, Wang J Q, et al. Crack growth behavior for stress corrosion cracking of 690 alloy in high temperature water [J]. Acta Metall. Sin., 2010, 46: 1267
doi: 10.3724/SP.J.1037.2010.01267
但体纯, 吕战鹏, 王俭秋 等. 690合金在高温水中的应力腐蚀裂纹扩展行为 [J]. 金属学报, 2010, 46: 1267
doi: 10.3724/SP.J.1037.2010.00199
49 Liu B P, Zhang Z M, Wang J Q, et al. Review of stress corrosion crack initiation of nuclear structural materials in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 513
刘保平, 张志明, 王俭秋 等. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 513
doi: 10.11902/1005.4537.2021.130
50 Bai J X, Ritter S, Seifert H P, et al. Using tapered specimens to study the effect of hydrogen and surface finish on SCC initiation in Alloy 182 under boiling water reactor conditions [J]. Corros. Eng. Sci. Technol., 2017, 52: 558
doi: 10.1080/1478422X.2017.1340245
51 Terachi T, Totsuka N, Yamada T, et al. Influence of dissolved hydrogen on structure of oxide film on Alloy 600 formed in primary water of pressurized water reactors [J]. J. Nucl. Sci. Technol., 2003, 40: 509
doi: 10.1080/18811248.2003.9715385
52 Zhong X Y, Bali S C, Shoji T. Effects of dissolved hydrogen and surface condition on the intergranular stress corrosion cracking initiation and short crack growth behavior of non-sensitized 316 stainless steel in simulated PWR primary water [J]. Corros. Sci., 2017, 118: 143
doi: 10.1016/j.corsci.2017.02.003
53 Bai J X, Ritter S, Seifert H P, et al. Stress corrosion cracking initiation and short crack growth behaviour in Alloy 182 weld metal under simulated boiling water reactor hydrogen water chemistry conditions [J]. Corros. Sci., 2018, 131: 208
doi: 10.1016/j.corsci.2017.11.021
54 Rebak R B, Szklarska-Smialowska Z. Effect of partial pressure of hydrogen on IGSCC of Alloy 600 in PWR primary water [J]. Corrosion, 1991, 47: 754
doi: 10.5006/1.3585185
55 Jiao Y, Zhang S H, Tan Y. Research progress on stress corrosion cracking of stainless steel for nuclear power plant in high-temperature and high-pressure water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 417
焦 洋, 张胜寒, 檀 玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 417
56 Tigeras A, Stellwag B, Engler N, et al. Understanding the zinc behaviour in PWR primary coolant: a comparison between French and German experience [J]. VGB PowerTech, 2008, 88: 61
57 Arjmand F, Wang J M, Zhang L F. Zinc addition and its effect on the corrosion behavior of a 30% cold forged Alloy 690 in simulated primary coolant of pressurized water reactors [J]. J. Alloy. Compd., 2019, 791: 1176
doi: 10.1016/j.jallcom.2019.03.362
58 Holdsworth S, Scenini F, Burke M G, et al. The effect of high-temperature water chemistry and dissolved zinc on the cobalt incorporation on type 316 stainless steel oxide [J]. Corros. Sci., 2018, 140: 241
doi: 10.1016/j.corsci.2018.05.041
59 Chajduk E, Bojanowska-Czajka A. Corrosion mitigation in coolant systems in nuclear power plants [J]. Prog. Nucl. Energ., 2016, 88: 1
doi: 10.1016/j.pnucene.2015.11.011
60 Hosokawa H, Nagase M. Investigation of cobalt deposition behavior with zinc injection on stainless steel under BWR conditions [J]. J. Nucl. Sci. Technol., 2004, 41: 682
doi: 10.1080/18811248.2004.9715533
61 Inagaki H, Nishikawa A, Sugita Y, et al. Synergy effect of simultaneous zinc and nickel addition on cobalt deposition onto stainless steel in oxygenated high temperature water [J]. J. Nucl. Sci. Technol., 2003, 40: 143
62 Ohashi T, Ito T, Hosokawa H, et al. Investigation of cobalt buildup behavior and suppression by zinc injection on stainless steel under HWC conditions using simultaneous continuous measurements of corrosion and cobalt buildup [J]. J. Nucl. Sci. Technol., 2015, 52: 588
63 Fuse M, Nagase M, Usui N, et al. Cobalt radioactivity behaviors in a BWR environment and countermeasures for dose rate reduction [J]. Nucl. Sci. Eng., 2015, 181: 175
64 Angeliu T M, Andresen P L. Effect of zinc additions on oxide rupture strain and repassivation kinetics of iron-based alloys in 288oC water [J]. Corrosion, 1996, 52: 28
doi: 10.5006/1.3292092
[1] MA Heng, TIAN Huiyun, LIU Yuxi, WANG Yuexiang, HE Kang, CUI Zhongyu, CUI Hongzhi. Corrosion Behavior of S420 Steel in Different Marine Zones[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[2] FENG Xingguo, GU Zhuoran, FAN Qiqi, LU Xiangyu, YANG Yashi. Corrosion Resistance of 2205 Stainless Steel Bar in Modified Coral Concretes[J]. 中国腐蚀与防护学报, 2024, 44(3): 789-796.
[3] JI Yuefei, HAO Long, WANG Jianqiu, LI Qinghua, ZHENG Yue, YU Pei, KE Wei. Research Progress on Compatibility Between Alkalizing Agents and Materials in PWR Secondary Circuit[J]. 中国腐蚀与防护学报, 2024, 44(2): 267-277.
[4] CHANG Xueting, SONG Jiaqi, WANG Bing, WANG Dongsheng, CHEN Wencong, WANG Haifeng. Effect of Micro-alloying with Cr, N and Al on Corrosion Resistance of High Manganese Austenitic Steel in Acidic Salt Spray Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.
[5] XING Xuesong, FAN Baitao, ZHU Xinyu, ZHANG Junying, CHEN Changfeng. Corrosion Characteristics of P110SS Casing Steel for Ultra-deep Well in Artificial Formation Water with Low H2S and High CO2 Content[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[6] YANG Xiangyu, GUAN Lei, LI Yu, ZHANG Yongkang, WANG Guan, YAN Dejun. Numerical Simulation and Experimental Study on Erosion-corrosion of Square Elbow Based on Orthogonal Test[J]. 中国腐蚀与防护学报, 2022, 42(6): 979-987.
[7] MEI Jiaxue, DU Zunfeng, ZHU Haitao. Ultimate Bearing Capacity of Ship Structure Based on Random Corrosion[J]. 中国腐蚀与防护学报, 2022, 42(4): 662-668.
[8] WANG Qixuan, LYU Wensheng, YANG Peng, ZHU Liyi, LIAO Wenjing, ZHU Yuanle. Corrosion of Stainless Steel Shell of Embedded Sensor in Tailings Pond[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[9] GE Pengli, ZENG Wenguang, XIAO Wenwen, GAO Duolong, ZHANG Jiangjiang, LI Fang. Effect of Applied Stress and Medium Flow on Corrosion Behavior of Carbon Steel in H2S/CO2 Coexisting Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[10] JIA Shichao, GAO Jiaqi, GUO Hao, WANG Chao, CHEN Yangyang, LI Qi, TIAN Yimei. Influence of Water Quality on Corrosion of Cast Iron Pipe in Reclaimed Water[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[11] ZHAO Guoxian,HUANG Jing,XUE Yan. Corrosion Behavior of Materials Used for Surface Gathering and Transportation Pipeline in an Oilfield[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[12] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[13] Li LIU,Sirong YU. Effect of Gd Addition on Corrosion Behavior of AM60 Magnesium Alloy[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[14] Yang LI, Chengyuan LI, Xu CHEN, Jiaxing YANG, Xintong WANG, Nanxi MING, Zhenze HAN. Gray Relationship Analysis on Corrosion Behavior of Super 13Cr Stainless Steel in Environments of Marine Oil and Gas Field[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.
[15] Fengxuan SONG,Qizhong ZHAO,Feilong LI,Yuelu REN,Kui HUANG,Xinming ZHANG. Effect of Aging Treatment on Corrosion Rate of 7050 Al-alloy Plate[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
No Suggested Reading articles found!