Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1319-1328    DOI: 10.11902/1005.4537.2022.398
Current Issue | Archive | Adv Search |
Preparation and Properties of Slippery Anti-corrosion Coating Based on SiO2 with Coral Cluster Morphology
ZHANG Kaili1, DU Lili1, TAN Jun2, LIU Xiangzhou2, MA Ji1, QIU Ping1()
1.College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
2.The Third Gas Production Plant, PetroChina Changqing Oilfield Company, Ordos 017300, China
Cite this article: 

ZHANG Kaili, DU Lili, TAN Jun, LIU Xiangzhou, MA Ji, QIU Ping. Preparation and Properties of Slippery Anti-corrosion Coating Based on SiO2 with Coral Cluster Morphology. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1319-1328.

Download:  HTML  PDF(17241KB) 
Export:  BibTeX | EndNote (RIS)      

The work aims to improve the stability and mechanical wear resistance of the lubricating layer of the slippery coating, which are the key problems to be solved for long-term service of the coating. The SiO2 with coral cluster morphology was prepared by water-oil two-phase method, and then porous micro-nanostructures were constructed by mixing SiO2 with acrylic polyurethane resin and spraying. Meanwhile the influence of substrate morphology with different SiO2 content on the storage capacity of dimethyl silicone oil of the coating surface was studied. The mechanical abrasion resistance, self-cleaning and anti-corrosion properties of the slippery coatings were also assessed. The results showed that with the increased of SiO2 content, the roughness of the substrate increased, and the disordered substrate morphology was more uniform, which was more conducive to improving the stability of the silicon oil layer. The sliding angle of SiO2-25 was 5.4°. And the SiO2-25 even had excellent lyophobicity and self-cleaning property after wear test. Due to the influence of fillers on the pore structure of the coating, the |Z|0.01 Hz of SiO2-25 was still as high as 6.62×109 Ω·cm2 after 20 d of immersion in 3.5%NaCl solution, higher than SiO2-30. Among others, the coating of SiO2-25 has the best corrosion resistance for carbon steel for the long-term.

Key words:  slippery coating      SiO2      mechanical abrasion resistance      anti-corrosion      Q235     
Received:  15 December 2022      32134.14.1005.4537.2022.398
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52071335);National Natural Science Foundation of China(2462020YXZZ016);Funding of China University of Petroleum (Beijing)(2462015YQ0602)
Corresponding Authors:  QIU Ping, E-mail:

URL:     OR

Fig.1  Flow chart for preparation of super-lubricative coating
Fig.2  SEM morphologies of porous coral clustered SiO2 (a) and intermediate coatings containing 20% (b), 25% (c) and 30% (d) SiO2, the insets show static contact angles of simethicone drop
Fig.3  Laser scanning images and 3D surface structures of intermediate coatings containing 20% (a, d), 25% (b, e) and 30% (c, f) SiO2
Fig.4  Optical images and static contact angles of SiO2-20 (a), SiO2-25 (b), and SiO2-30 (c) super-lubricative coatings
CategoryBefore silicone oil injectionAfter silicone oil injection
Contact angle115.9°133.4°134.4°100.6°101.3°101.6°
Sliding angle>90°>90°>90°7.9°5.4°3.7°
Table 1  Static contact angles and sliding angles of the coatings before and after silicone oil injection
Fig.5  Comparison of the mass losses of three super-lubricative coatings after abrasion for different cycles
Coating0-10 cycles10-20 cycles20-30 cycles30-40 cycles
Table 2  Mass loss increments of three super-lubricative coatings after abrasion for different cycles
Fig.6  Comparison of the static contact angles (a) and sliding angles (b) of three super-lubricative coatings after abrasion for different cycles
Fig.7  Sliding tests of bentonite solution (a) and soil solution (b) on three super-lubricative coatings
Fig.8  Sliding process of coffee drops on three super-lubricative coatings before (a) and after (b) abrasion for 40 cycles
Fig.9  Bode plots of SiO2-20 (a), SiO2-25 (b), and SiO2-30 (c) super-lubricative coatings and comparison diagram of |Z|0.01 Hz values (d)
Fig.10  Bode plots of SiO2-25 intermediate coating and its super-lubricative coating after immersion in 3.5%NaCl solution for 0 d (a) and 20 d (b)
Fig.11  Corrosion morphologies of three super-lubricative coatings after salt spray test: (a) SiO2-20, (b) SiO2-25, (c) SiO2-30
CoatingCoating categoryCorrosion test conditions

Result comparison

|Z|0.01 Hz / Ω·cm2

SiO2-25slippery coating3.5%NaCl solution immersion0 d20 d
KCC-1/PVDF[12]Superhydrophobic coating1 d14 d
KCC-1/PVDF-SLIPS[12]slippery coating1 d14 d
LDH-PFDS[24]Superhydrophobic coating7 d
LDH-PFDS-SLIPS[24]slippery coating7 d
PDMS-SiO2/PANI[25]Superhydrophobic coating1 h8 d
TMES-modifified SiO2 matrix coating[26]Superhydrophobic coating0 d5 d
Table 3  Comparison of corrosion resistance of different kinds of slippery/superhydrophobic coatings
1 Wong T S, Kang S H, Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity [J]. Nature, 2011, 477: 443
doi: 10.1038/nature10447
2 Liu M M, Hou Y Y, Li J, et al. Transparent slippery liquid-infused nanoparticulate coatings [J]. Chem. Eng. J., 2018, 337: 462
doi: 10.1016/j.cej.2017.12.118
3 Zhang H, Wang P, Zhang D. Designing a transparent organogel layer with self-repairing property for the inhibition of marine biofouling [J]. Colloids Surf., 2018, 538A: 140
4 Tuo Y J, Zhang H F, Chen W P, et al. Corrosion protection application of slippery liquid-infused porous surface based on aluminum foil [J]. Appl. Surf. Sci., 2017, 423: 365
doi: 10.1016/j.apsusc.2017.06.170
5 Liu X L, Chen H W, Zhao Z H, et al. Slippery liquid-infused porous electric heating coating for anti-icing and de-icing applications [J]. Surf. Coat. Technol., 2019, 374: 889
doi: 10.1016/j.surfcoat.2019.06.077
6 Manna U, Raman N, Welsh M A, et al. Slippery liquid-infused porous surfaces that prevent microbial surface fouling and kill non-adherent pathogens in surrounding media: a controlled release approach [J]. Adv. Funct. Mater., 2016, 26: 3599
doi: 10.1002/adfm.201505522 pmid: 28713229
7 Gulfam R, Orejon D, Choi C H, et al. Phase-change slippery liquid-infused porous surfaces with thermo-responsive wetting and shedding states [J]. ACS Appl. Mater. Interfaces, 2020, 12: 34306
doi: 10.1021/acsami.0c06441
8 Xiang T F, Zheng S L, Zhang M, et al. Bioinspired slippery zinc phosphate coating for sustainable corrosion protection [J]. ACS Sustainable Chem. Eng., 2018, 6: 10960
doi: 10.1021/acssuschemeng.8b02345
9 Han X M, Dou W W, Chen S G, et al. Stable slippery coating with structure of tubes and pyramids for inhibition of corrosion induced by microbes and seawater [J]. Surf. Coat. Technol., 2020, 388: 125596
doi: 10.1016/j.surfcoat.2020.125596
10 Vogel N, Belisle R A, Hatton B, et al. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers [J]. Nat. Commun., 2013, 4: 2176
doi: 10.1038/ncomms3176
11 Kim P, Kreder M J, Alvarenga J, et al. Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates [J]. Nano Lett., 2013, 13: 1793
doi: 10.1021/nl4003969 pmid: 23464578
12 Cao J Y, Zhnag H Y, Yang W J, et al. Preparation and properties of KCC-1/PVDF superhydrophobic and ultra-slip surfaces [J]. Surf. Technol., 2020, 49(6): 152
曹京宜, 张海永, 杨文静 等. KCC-1/PVDF超疏水与超滑表面的制备及其性能研究 [J]. 表面技术, 2020, 49(6): 152
13 Zhang M L, Yu J, Chen R R, et al. Highly transparent and robust slippery lubricant-infused porous surfaces with anti-icing and anti-fouling performances [J]. J. Alloy. Compd., 2019, 803: 51
doi: 10.1016/j.jallcom.2019.06.241
14 Zhang F M, Zeng Z X, Wang G, et al. Fabrication and anti-corrosion performance of superhydrophobic surface film on Q235 steel substrate [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 617
张方铭, 曾志翔, 王 刚 等. Q235钢超疏水表面制备及耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2016, 36: 617
doi: 10.11902/1005.4537.2016.182
15 Qiu Z H, Qiu R, Xiao Y M, et al. Slippery liquid-infused porous surface fabricated on CuZn: a barrier to abiotic seawater corrosion and microbiologically induced corrosion [J]. Appl. Surf. Sci., 2018, 457: 468
doi: 10.1016/j.apsusc.2018.06.139
16 Song F, Wu C Q, Chen H L, et al. Water-repellent and corrosion-resistance properties of superhydrophobic and lubricant-infused super slippery surfaces [J]. RSC Adv., 2017, 7: 44239
doi: 10.1039/C7RA04816E
17 Nie X H, Du C W, Li X G. Influence of temperature on the corrosion behavior and mechanism of Q235 steel in Dagang soil [J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 48
聂向晖, 杜翠薇, 李晓刚. 温度对Q235钢在大港土中腐蚀行为和机理的影响 [J]. 北京科技大学学报, 2009, 31: 48
18 Chen T C, Xiang J H, Jiang L F, et al. High-temperature corrosion behavior of Q235 steel in oxidizing atmosphere containing chlorine [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 560
陈土春, 向军淮, 江龙发 等. Q235钢在氧化性含Cl气氛中的高温腐蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 560
doi: 10.11902/1005.4537.2020.129
19 Ouyang Y B, Cao Q, Li B Z, et al. Nanofluid-infused slippery surface: bioinspired coating on Zn with high corrosion inhibition performance [J]. Colloids Surf., 2021, 608A: 125492
20 Xie J, Hu J, Lin X D, et al. Robust and anti-corrosive PDMS/SiO2 superhydrophobic coatings fabricated on magnesium alloys with different-sized SiO2 nanoparticles [J]. Appl. Surf. Sci., 2018, 457: 870
doi: 10.1016/j.apsusc.2018.06.250
21 Deng R, Shen T, Chen H L, et al. Slippery liquid-infused porous surfaces (SLIPSs): a perfect solution to both marine fouling and corrosion? [J]. J. Mater. Chem., 2020, 8A: 7536
22 Xing K, Li Z X, Wang Z R, et al. Slippery coatings with mechanical robustness and self-replenishing properties as potential application on magnesium alloys [J]. Chem. Eng. J., 2021, 418: 129079
doi: 10.1016/j.cej.2021.129079
23 Zhao S R, Shen T, Li Y T, et al. Epoxy-resin-based slippery liquid infused anti-icing coating based on breath figure [J]. Acta Polym. Sin., 2021, 52: 1622
赵书瑞, 申 婷, 李玉堂 等. 基于呼吸图法的环氧树脂基超滑液体灌注防冰涂层 [J]. 高分子学报, 2021, 52: 1622
24 Yao W H, Chen Y H, Wu L, et al. Preparation of slippery liquid-infused porous surface based on MgAlLa-layered double hydroxide for effective corrosion protection on AZ31 Mg alloy [J]. J. Taiwan Inst. Chem. Eng., 2022, 131: 104176
doi: 10.1016/j.jtice.2021.104176
25 Yang P G, Zheng Y, Peng R C, et al. Fabrication and corrosion resistance of superhydrophobic PDMS-SiO2/PANI coating on A3 steel [J]. Mater. Prot., 2018, 51(5): 12
杨品高, 郑 玉, 彭瑞超 等. A3碳钢表面PDMS-SiO2/PANI超疏水膜的制备及其防腐蚀性能 [J]. 材料保护, 2018, 51(5): 12
26 Tong W, Xiong D S, Zhou H J. TMES-modified SiO2 matrix non-fluorinated superhydrophobic coating for long-term corrosion resistance of aluminium alloy [J]. Ceram. Int., 2020, 46: 1211
doi: 10.1016/j.ceramint.2019.08.251
[1] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[2] HU Jiezhen, SHANGGUAN Juyu, DENG Peichang, FENG Qilan, WANG Gui, WANG Peilin. Effect of Barnacle Adhesion on Corrosion Behavior of Q235 Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[3] MENG Fandi, GAO Haodong, LIU Li, CUI Yu, LIU Rui, WANG Fuhui. Preparation and Anticorrosive Performance of a Basalt Organic Coating for Deep Sea Coupled Pressure-fluid Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
[4] WANG Honglun, YANG Hua, CAI Hui, LI Bowen. Corrosion Behavior of Q235 Steel by Outdoor Exposure and under Shelter in Atmosphere of Hainan Coastal[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[5] YU Fang, WANG Xiang, ZHANG Zhao. Research Progress of Nanofillers for Epoxy Anti-corrosion Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 220-230.
[6] LI Yuqiao, SI Weiting, GAO Rongjie. Preparation of Superamphiphobic Surface on Al-alloy and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(6): 966-972.
[7] XUE Fang, LIU Liangyu, TAN Long. Aerobic Corrosion Process of Q235 Steel in NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[8] LEI Yanhua, LIU Ningxuan, ZHANG Yuliang, CHANG Xueting, LIU Tao. Preparation, Corrosion- and Wear-resistance of Polymethyl Methacrylate Coating Modified with Particles of Basalt/cerium Oxide Composite[J]. 中国腐蚀与防护学报, 2022, 42(4): 597-604.
[9] HU Yunyuan, QIAN Wei, HUA Yinqun, YE Yunxia, CAI Jie, DAI Fengze. Effect of Pre-corrosion of Gd2Zr2O7 at 900-1300 ℃ on Its Hot Corrosion Behavior at 1250 ℃ Beneath Deposites of CaO-MgO-Al2O3-SiO2[J]. 中国腐蚀与防护学报, 2022, 42(4): 687-692.
[10] LIU Shuhui, LIU Bin, XU Dawei, LIU Yu, CHEN Fanwei, LIU Siqi. Research Progress on Anti-corrosion Coatings of Layered Double Hydroxides[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[11] WANG Jing, WANG Siyan, ZHANG Chong, WANG Wentao, CAO Xing, FAN Ning, XU Hongyan. Effect of Nitrogen Doping on Corrosion Inhibition Performance of Carbon Nanoparticles[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.
[12] YIN Xubao, LI Yuqiao, GAO Rongjie. Preparation of Superhydrophobic Surface on Copper Substrate and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[13] XIA Xiaojian, CAI Jianbin, LIN Deyuan, WAN Xinyuan, LI Yangsen, ZHANG Biaohua, CHEN Yunxiang, HAN Jiceng, ZOU Zhimin, JIANG Chunhai. Corrosion Status, Corrosion Mechanisms and Anti-corrosion Measures in Coastal Substations[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[14] WANG Jun, CHEN Junjun, XIE Yi, XU Song, LIU Lanlan, WU Tangqing, YIN Fucheng. Evaluation of Environmental Factors Related with Atmosphere Corrosivity in Hunan Provice by Atmospheric Corrosion Monitoring Technique[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
[15] ZHOU Hao, WANG Shengli, LIU Xuefeng, YOU Shijie. Hybrid Corrosion Inhibitor for Anti-corrosion and Protection of Bronze Relics[J]. 中国腐蚀与防护学报, 2021, 41(4): 517-522.
No Suggested Reading articles found!