|
|
Preparation of Micro Metal Oxide pH Electrode and Its Application in Corrosion and Protection |
GU Yuhui1,2, DONG Liang1( ), SONG Qinfeng1 |
1.Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China 2.Sinopec Lubricants Co., Ltd. Sales Branch, Nanjing 210003, China |
|
|
Abstract Metal oxide electrode is widely used for pH examination in food, biology and medical industries due to its characteristics of wide pH response range (pH measurement range can reach 2-12, even 0-14) and easy to be miniaturized. It can be used for in situ measurement of pH value at the vicinity of metal/electrolyte interface, thus providing important parameters for deducing the possible electrochemical reactions, explaining specific corrosion behavior and revealing the relevant corrosion mechanism. In this paper, the response performance, performance parameters and the research progress of metal oxide electrodes made of iridium, manganese, titanium, tungsten and the relevant oxides were summarized. Among which, the iridium oxide electrode was most widely used as a pH detector for its stability and high response slope (-59.5 - -74.91 mV/pH). The commonly used preparation methods for micro metal oxide pH electrodes such as electrochemical deposition method, thermal oxidation method, sol-gel method, screen printing method, etc. as well as the effect of different process parameters were also summarized. The electrochemical deposition method had a broad application prospect, and with which the prepared electrodes had the characteristics of low cost, high response slope and fast response rate, but their potential drift for the long-term service needed to be solved. Aiming at the matter of potential drift and long aging time of metal pH electrodes, the effect of post-treatment processes such as hydration, heat treatment and hydrothermal treatment on the electrode performance were introduced. The applications of metal oxide pH micro-electrodes for the examination of pitting corrosion, galvanic corrosion, stress corrosion and other local corrosion, as well as for the monitoring cathodic protection were reviewed, including the micro metal oxide pH electrode, composite double-tube pH electrode and the combination of pH electrode and scanning electrochemical microscopy technology (SECM), etc. The metal oxide electrode was easy to be miniaturized and had a stable response, which made it show good response performance in the process of monitoring the change of pH value nearby the metal/electrolyte interface formed during local anodic corrosion or cathodic reduction reaction. Lastly, the preparation technology and application trend of the micro metal oxide electrode were also prospected.
|
Received: 28 October 2022
32134.14.1005.4537.2022.333
|
|
Fund: National Natural Science Foundation of China(51401017);Jiangsu Province Graduate Research and Practice Innovation Program(SJCX21_1269) |
Corresponding Authors:
DONG Liang, E-mail: dongliang@cczu.edu.cn
|
1 |
Wahyuni W T, Putra B R, Marken F. Voltammetric detection of vitamin B1 (thiamine) in neutral solution at a glassy carbon electrode via in situ pH modulation [J]. Analyst, 2020, 145: 1903
doi: 10.1039/c9an02186h
pmid: 31984381
|
2 |
Kemer B, Demir E. A novel potentiometric pH electrode based on sulfated natural Fe3O4 and analytical application in food samples [J]. J. Food Measure. Charact., 2018, 12: 2256
|
3 |
Hou J X, Liu Z L, Zhou Y, et al. An experimental study of pH distributions within an electricity-producing biofilm by using pH microelectrode [J]. Electrochim. Acta, 2017, 251: 187
doi: 10.1016/j.electacta.2017.08.101
|
4 |
Uria N, Abramova N, Bratov A, et al. Miniaturized metal oxide pH sensors for bacteria detection [J]. Talanta, 2016, 147: 364
doi: 10.1016/j.talanta.2015.10.011
pmid: 26592620
|
5 |
Wang M, Ha Y. An electrochemical approach to monitor pH change in agar media during plant tissue culture [J]. Biosens. Bioelectron., 2007, 22: 2718
pmid: 17178219
|
6 |
Prats-Alfonso E, Abad L, Casañ-Pastor N, et al. Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples [J]. Biosens. Bioelectron., 2013, 39: 163
doi: 10.1016/j.bios.2012.07.022
pmid: 22857994
|
7 |
Savvas I, Raptopoulos D, Rallis T. A "Light Meal" three hours preoperatively decreases the incidence of gastro-esophageal reflux in dogs [J]. J. Am. Anim. Hosp. Assoc., 2016, 52: 357
pmid: 27685364
|
8 |
Yang X Z, Zhang H W. A review on Pourbaix diagrams and their applications in metal corrosion and its prevention [J]. J. Shandong Inst. Technol., 1982, (2): 1
|
|
杨熙珍, 张鹤呜. 布拜图及其在金属腐蚀与防护中的应用 (综论) [J]. 山东工学院学报, 1982, (2): 1
|
9 |
Zohdy K M, El-Sherif R M, El-Shamy A M. Corrosion and passivation behaviors of tin in aqueous solutions of different pH [J]. J. Bio- Tribo-Corros., 2021, 7: 74
doi: 10.1007/s40735-021-00515-6
|
10 |
Da Silva M M, Mascaro L H, Pereira E C, et al. Near-surface solution pH measurements during the pitting corrosion of AISI 1020 steel using a ring-shaped sensor [J]. J. Electroanal. Chem., 2016, 780: 379
doi: 10.1016/j.jelechem.2016.02.017
|
11 |
Lin C J, Luo J L, Sun H Y, et al. Scanning combination micro pH electrode for in-situ pH imaging in the localized corrosion [J]. Electrochemistry, 1996, 2(4): 373
|
|
林昌健, 骆静利, 孙海燕 等. 扫描复合微pH电极原位测量局部腐蚀体系pH分布图象 [J]. 电化学, 1996, 2(4): 373
|
12 |
Zhu Z J, Ye Z N, Zhang Q H, et al. Novel dual Pt-Pt/IrO x ultramicroelectrode for pH imaging using SECM in both potentiometric and amperometric modes [J]. Electrochem. Commun., 2018, 88: 47
doi: 10.1016/j.elecom.2018.01.018
|
13 |
Zhu Z J, Zhang Q H, Liu P, et al. Application of microelectrochemical sensors in monitoring of localized interface pH [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 367
|
|
朱泽洁, 张勤号, 刘 盼 等. 微型电化学传感器在界面微区pH值监测中的应用 [J]. 中国腐蚀与防护学报, 2019, 39: 367
doi: 10.11902/1005.4537.2019.136
|
14 |
Sun K Q, Gao H, Hu J Q, et al. Effect of pH on the corrosion and crack growth behavior of the ZK60 magnesium alloy [J]. Corros. Sci., 2021, 179: 109135
doi: 10.1016/j.corsci.2020.109135
|
15 |
L’Haridon-Quaireau S, Laot M, Colas K, et al. Effects of temperature and pH on uniform and pitting corrosion of aluminium alloy 6061-T6 and characterisation of the hydroxide layers [J]. J. Alloy. Comp., 2020, 833: 155146
doi: 10.1016/j.jallcom.2020.155146
|
16 |
Tada E, Sugawara K, Kaneko H. Distribution of pH during galvanic corrosion of a Zn/steel couple [J]. Electrochim. Acta, 2004, 49: 1019
doi: 10.1016/j.electacta.2003.10.012
|
17 |
Shao M H, Huang R S, Hu R G, et al. Fabrication of combination scanning micro pH electrode and its application in localized corrosion [J]. Acta Phys. Chim. Sin., 2002, 18: 934
doi: 10.3866/PKU.WHXB20021014
|
|
邵敏华, 黄若双, 胡融刚 等. 复合型扫描微pH电极及其在局部腐蚀中的应用 [J]. 物理化学学报, 2002, 18: 934
|
18 |
Li Y, Liu Z Y, Fan E D, et al. The effect of crack tip environment on crack growth behaviour of a low alloy steel at cathodic potentials in artificial seawater [J]. J. Mater. Sci. Technol., 2020, 54: 119
doi: 10.1016/j.jmst.2020.04.034
|
19 |
Cui Z Y. Electrochemical and stress corrosion cracking behavior and mechanism of X70 pipeline steel in a near-netrual pH environment [D]. Beijing: University of Science and Technology Beijing, 2015
|
|
崔中雨. X70钢近中性pH环境中电化学及应力腐蚀行为与机理研究 [D]. 北京: 北京科技大学, 2015
|
20 |
Büchler M. On the mechanism of cathodic protection and its implications on criteria including AC and DC interference conditions [J]. Corrosion, 2020, 76: 451
doi: 10.5006/3379
|
21 |
Huo Y, Tan M Y J, Forsyth M. Investigating effects of potential excursions and pH variations on cathodic protection using new electrochemical testing cells [J]. Corros. Eng. Sci. Technol., 2016, 51: 171
doi: 10.1179/1743278215Y.0000000044
|
22 |
Chen X, Du C W, Li X G, et al. Effects of cathodic potential on the local electrochemical environment under a disbonded coating [J]. J. Appl. Electrochem., 2009, 39: 697
doi: 10.1007/s10800-008-9711-3
|
23 |
Qin H M, Du Y X, Lu M X, et al. Effect of dynamic DC stray current on corrosion behavior of X70 steel [J]. Mater. Corros., 2020, 71: 35
doi: 10.1002/maco.201911022
|
24 |
McMurray H N, Douglas P, Abbot D. Novel thick-film pH sensors based on ruthenium dioxide-glass composites [J]. Sens. Actuators, 1995, 28B: 9
|
25 |
Lattach Y, Rivera J F, Bamine T, et al. Iridium oxide-polymer nanocomposite electrode materials for water oxidation [J]. ACS Appl. Mater. Interfaces, 2014, 6: 12852
doi: 10.1021/am5027852
|
26 |
Huang X R, Ren Q Q, Yuan X J, et al. Iridium oxide based coaxial pH ultramicroelectrode [J]. Electrochem. Commun., 2014, 40: 35
doi: 10.1016/j.elecom.2013.12.012
|
27 |
Hu J. Fabrication, characterisation, and optical applications of electrochemically deposited nanostructured IrO x films [D]. Southampton: University of Southampton, 2008
|
28 |
Chu J, Zhao Y, Li S H, et al. An integrated solid-state pH microelectrode prepared using microfabrication [J]. Electrochim. Acta, 2015, 152: 6
doi: 10.1016/j.electacta.2014.11.102
|
29 |
Sadig H R, Cheng L, Xiang T F. Synthesis of tetra-metal oxide system based pH sensor via branched cathodic electrodeposition on different substrates [J]. Arab. J. Chem., 2019, 12: 610
doi: 10.1016/j.arabjc.2018.10.010
|
30 |
Liu R, Zhang M, Meng Q H, et al. Oscillations of pH at the Fe│H2SO4 interface during anodic dissolution [J]. Electrochem. Commun., 2017, 82: 103
doi: 10.1016/j.elecom.2017.08.006
|
31 |
Zhu Z J, Liu X Y, Ye Z N, et al. A fabrication of iridium oxide film pH micro-sensor on Pt ultramicroelectrode and its application on in-situ pH distribution of 316L stainless steel corrosion at open circuit potential [J]. Sens. Actuators, 2018, 255B: 1974
|
32 |
Fog A, Buck R P. Electronic semiconducting oxides as pH sensors [J]. Sens. Actuators, 1984, 5: 137
doi: 10.1016/0250-6874(84)80004-9
|
33 |
Wang H J. Progress in pH electrodes and sensors [J]. Chem. Sens., 1987, 7 (1): 1
doi: 10.1093/chemse/7.1.1
|
|
汪厚基. pH电极和传感器的进展 [J]. 化学传感器, 1987, 7 (1): 1
|
34 |
Chen C S, Cao L C. Preparation and properties of iridium pH electrode [J]. Chem. Sens., 1982, (2): 46
|
|
陈重升, 曹履诚. 铱pH电极的制备和性能 [J]. 离子选择电极通讯, 1982, (2): 46
|
35 |
Fan H B. Preparation and properties of iridium pH electrode [J]. Chemical sensors, 1996, 16 (2): 99
|
|
范宏斌. 金属铱/氧化铱pH电极的研制 [J]. 化学传感器, 1996, 16 (2): 99
|
36 |
Huang R S, Hu R G, Du R G, et al. Fabrication of IrO2-pH microelectrode and its application in study of chemical micro-environment at steel/concrete interface [J]. Corros. Sci. Prot. Technol., 2002, 14: 305
|
|
黄若双, 胡融刚, 杜荣归 等. IrO2-pH微电极的研制及钢筋/混凝土界面pH的测量 [J]. 腐蚀科学与防护技术, 2002, 14: 305
|
37 |
Huang F F. IrO x -pH electrode fabrication, response mechanism and its application study [D]. Beijing: University of Science and Technology Beijing, 2016
|
|
黄菲菲. IrO x pH电极制备、响应机理及其应用研究 [D]. 北京: 北京科技大学, 2016
|
38 |
Kim T Y, Yang S. Fabrication method and characterization of electrodeposited and heat-treated iridium oxide films for pH sensing [J]. Sens. Actuators, 2014, 196B: 31
|
39 |
Huang W D, Cao H N, Deb S, et al. A flexible pH sensor based on the iridium oxide sensing film [J]. Sens. Actuator., 2011, 169A: 1
|
40 |
Jović M, Hidalgo-Acosta J C, Lesch A, et al. Large-scale layer-by-layer inkjet printing of flexible iridium-oxide based pH sensors [J]. J. Electroanal. Chem., 2018, 819: 384
doi: 10.1016/j.jelechem.2017.11.032
|
41 |
Yao S, Wang M, Madou M. A pH electrode based on Melt-Oxidized iridium oxide [J]. J. Electrochem. Soc., 2001, 148: H29
doi: 10.1149/1.1353582
|
42 |
Du Z X. Preparation and characterization of IrO x pH sensor [D]. Qingdao: Qingdao University of Technology, 2017
|
|
杜振兴. 铱氧化物pH传感器制备及性能表征 [D]. 青岛: 青岛理工大学, 2017
|
43 |
El-Giar E E D M, Wipf D O. Microparticle-based iridium oxide ultramicroelectrodes for pH sensing and imaging [J]. J. Electroanal. Chem., 2007, 609: 147
doi: 10.1016/j.jelechem.2007.06.022
|
44 |
Wang D D, Yang C, Xia J F, et al. Improvement of the Ir/IrO2 pH electrode via hydrothermal treatment [J]. Ionics, 2017, 23: 2167
doi: 10.1007/s11581-017-2058-1
|
45 |
Mingels R H G, Kalsi S, Cheong Y, et al. Iridium and ruthenium oxide miniature pH sensors: Long-term performance [J]. Sens. Actuator., 2019, 297B: 126779
|
46 |
Burke L D, Lyons M E, O'sullivan E J M, et al. Influence of hydrolysis on the redox behaviour of hydrous oxide films [J]. J. Electroanal. Chem. Interfacial Electrochem., 1981, 122: 403
doi: 10.1016/S0022-0728(81)80176-3
|
47 |
Olthuis W, Robben M A M, Bergveld P, et al. PH sensor properties of electrochemically grown iridium oxide [J]. Sens. Actuator., 1990, 2B: 247
|
48 |
Huang F F, Bi P, Wan Z W, et al. Insight into the factors of thermal oxidation Influencing properties of iridium oxide electrodes [J]. Sens. Mater., 2020, 32: 3313
|
49 |
Gao L L, Cui Z B, Liu F G, et al. Fabrication and application of Ir/IrO2 electrode [J]. Mater. Rev., 2013, 27 (10): 31
|
|
高璐璐, 崔振邦, 刘福国 等. 铱/氧化铱电极的制备及应用 [J]. 材料导报, 2013, 27 (10): 31
|
50 |
Xi Y, Guo Z J, Wang L C, et al. Fabrication and characterization of iridium oxide pH microelectrodes based on sputter deposition method [J]. Sensors, 2021, 21: 4996
doi: 10.3390/s21154996
|
51 |
Dai M T, Xia J F, Xue Z H, et al. Improved iridium/iridium oxide pH electrode through supercritical treatment [J]. J. Electroanal. Chem., 2022, 922: 116740
doi: 10.1016/j.jelechem.2022.116740
|
52 |
Nishio K, Tsuchiya T. Electrochromic thin films prepared by sol-gel process [J]. Sol. Energy Mater. Sol. Cells, 2001, 68: 279
doi: 10.1016/S0927-0248(00)00362-7
|
53 |
Feng D M, Li H T, Lv D K, et al. Preparation of novel titanium-based pH electrodes [J]. Chem. Sensors, 1997, 17: 305
|
|
丰达明, 李海涛, 吕帝康 等. 新型钛基pH电极的研制 [J]. 化学传感器, 1997, 17: 305
|
54 |
Vasilyeva M S, Rudnev V S, Zabudskaya N E, et al. Preparation and study of Ti/TiO2, SbO x pH Electrodes [J]. J. Anal. Chem., 2020, 75: 246
doi: 10.1134/S1061934820020173
|
55 |
Lu M L, Yuan H Y, Xiao D. A novel pH electrode based on titanium nitride [J]. Chem. J. Chin. Univ., 2003, 24: 1400
|
|
鲁勖琳, 袁红雁, 肖 丹. 基于氮化钛的全固态碱性pH电极的研制 [J]. 高等学校化学学报, 2003, 24: 1400
|
56 |
Lu J, Lv D K, Liang H R, et al. Study on a Ti-based pH electrode by the ionic nitriding treatment [J]. J. Guangdong Non-Ferr. Met., 1997, 7: 51
|
|
鲁 建, 吕帝康, 梁汉荣 等. 用离子氮化技术制备钛基pH电极的研究 [J]. 广东有色金属学报, 1997, 7: 51
|
57 |
Wen Y Z, Wang X P. Characterization and application of a metallic tungsten electrode for potentiometric pH measurements [J]. J. Electroanal. Chem., 2014, 714/715: 45
|
58 |
Guo Q, Wu X Q, Han E H, et al. pH response behaviors and mechanisms of different tungsten/tungsten oxide electrodes for long-term monitoring [J]. J. Electroanal. Chem., 2016, 782: 91
doi: 10.1016/j.jelechem.2016.10.026
|
59 |
Zhang W D, Xu B. A solid-state pH sensor based on WO3-modified vertically aligned multiwalled carbon nanotubes [J]. Electrochem. Commun., 2009, 11: 1038
doi: 10.1016/j.elecom.2009.03.006
|
60 |
Chen D C, Fu C Y, Zhen J S, et al. Preparation of tungsten oxide pH sensor and its application to F- and sol solutions [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2006, 34 (3): 15
|
|
陈东初, 付朝阳, 郑家燊 等. 氧化钨pH传感器制备及其在F-和胶体溶液中的应用 [J]. 华南理工大学学报 (自然科学版), 2006, 34 (3): 15
|
61 |
Dimitrakopoulos L T, Dimitrakopoulos T, Alexander P W, et al. A tungsten oxide coated wire electrode used as a pH sensor in flow injection potentiometry [J]. Anal. Commun., 1998, 35: 395
doi: 10.1039/a807697i
|
62 |
Dong Y N. Study on the performance of W/WO3 pH electrode and its response mechanism [D]. Wuhan: Huazhong University of Science and Technology, 2015
|
|
董亚男. W/WO3 pH电极的性能与响应机理研究 [D]. 武汉: 华中科技大学, 2015
|
63 |
Kozawa A, Yeager J F. The cathodic reduction mechanism of electrolytic manganese dioxide in alkaline electrolyte [J]. J. Electrochem. Soc., 2019, 112: 959
doi: 10.1149/1.2423350
|
64 |
Shu Y Q, Yuan D Q. Fabrication of MnO2-based solid pH electrode [J]. Anal. Test. Technol. Instrum., 2000, 6: 109
|
|
舒友琴, 袁道强. 氧化锰型固态pH电极的研制 [J]. 分析测试技术与仪器, 2000, 6: 109
|
65 |
Shu Y Q, Li Q W, Luo G A. The fabrication of Nanosized MnO2 pH electrode and its application to the corrosion system containing hydrofluoric acid [J]. Anal. Chem., 2000, 28: 657
|
|
舒友琴, 李清文, 罗国安. 纳米二氧化锰型固体pH电极的研制及其在含氟腐蚀体系中的应用 [J]. 分析化学, 2000, 28: 657
|
66 |
Li Q W, Luo G A, Shu Y Q, et al. Fabrication of metal oxide-based solid pH electrode [J]. Chem. J. Chin. Univ., 2000, 21: 1380
|
|
李清文, 罗国安, 舒友琴 等. 丝网印刷纳米金属氧化物型固态pH电极的研制 [J]. 高等学校化学学报, 2000, 21: 1380
|
67 |
Shi Y H, Meng H M, Sun D B, et al. The research of manganese oxide coating electrode by anode electrodeposit process [J]. Heat Treat. Technol. Equip., 2008, 29 (1): 39
|
|
史艳华, 孟惠民, 孙冬柏 等. 阳极电沉积法制备锰类氧化物涂层电极的研究 [J]. 热处理技术与装备, 2008, 29 (1): 39
|
68 |
Lv D K, Feng D M. Study on the ionbombardment for surface treatment of titanium-base pH electro de [J]. J. Guangdong Non-Ferr. Met., 1999, 9: 141
|
|
吕帝康, 丰达明. 钛基pH电极表面离子轰击处理的研究 [J]. 广东有色金属学报, 1999, 9: 141
|
69 |
Liao Y H, Chou J C. Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol-gel method [J]. Mater. Chem. Phys., 2009, 114: 542
doi: 10.1016/j.matchemphys.2008.10.014
|
70 |
Ling X, Dai J H, Yang Y M, et al. The preparation and application of a wolfram/wolfram oxide micro-needle composite pH sensor [J]. J. Yunnan Nationalities Univ.: Nat. Sci. Ed., 2016, 25: 34
|
|
凌 茜, 戴建辉, 杨元梦 等. 针型复合钨/氧化钨微型pH复合电极的研制及应用 [J]. 云南民族大学学报: 自然科学版, 2016, 25: 34
|
71 |
Manjakkal L, Szwagierczak D, Dahiya R. Metal oxides based electrochemical pH sensors: Current progress and future perspectives [J]. Prog. Mater. Sci., 2019, 109: 100635
doi: 10.1016/j.pmatsci.2019.100635
|
72 |
Chou J C, Wang Y F. Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol-gel method [J]. Sens. Actuator., 2002, 86B: 58
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|