Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (5): 948-956    DOI: 10.11902/1005.4537.2022.285
Current Issue | Archive | Adv Search |
Research Progress on Structural Evolution and Applied Control Technology of Oxide Scale on Hot Rolled Steel Surface
WANG Junyang1, YI Gewen1(), WAN Shanhong1, JIANG Jun2
1.Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2.Jiuquan Iron & Steel (Group) Co., Ltd., Jiayuguan 735100, China
Download:  HTML  PDF(11452KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The oxide scale is an important matter affecting the surface quality of steel, which seriously restricts the application of hot rolled steel in high-end manufacturing. However, there is still a lack of comprehensive reports on the applied control technology for the formed oxide scale on the steel during rolling process. Herewith, the applied control technology for iron oxide scale and relevant mechanism are introduced in terms of mechanical descaling for rolled steel, red iron oxide scale (red rust) on steel surface, anti-corrosive iron oxide scale on hot rolled steel, galvanization of hot rolled steel without pre-pickling, and friction and wear resistance of iron oxide scale etc. By taking the current market demand and the existing control technology into consideration, the main development direction of future research on the applied control technology for the iron oxide scale on hot rolled steel is introduced.

Key words:  steel      oxidation      quadruple oxide scale      structure evolution      application control technology     
Received:  15 September 2022      32134.14.1005.4537.2022.285
ZTFLH:  TG142.3  
Fund: National Natural Science Foundation of China(52072380);National Natural Science Foundation of China(51675508)
Corresponding Authors:  YI Gewen, E-mail: gwyi@licp.cas.cn   

Cite this article: 

WANG Junyang, YI Gewen, WAN Shanhong, JIANG Jun. Research Progress on Structural Evolution and Applied Control Technology of Oxide Scale on Hot Rolled Steel Surface. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 948-956.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.285     OR     https://www.jcscp.org/EN/Y2023/V43/I5/948

Fig.1  Surface morphologies of short-time oxide scale at high temperatures [30]: (a) 850 °C for 30 s, (b) 850 °C for 60 s, (c) 850 °C for 120 s, (d) 850 °C for 300 s, (e) 850 °C for 900 s, (f) 950 °C for 30 s, (g) 950 °C for 60 s, (h) 950 °C for 120 s, (i) 950 °C for 300 s, (j) 950 °C for 900 s, (k) 1050 °C for 30 s, (l) 1050 °C for 60 s, (m) 1050 °C for 120 s, (n) 1050 °C for 300 s, (o) 1050 °C for 900 s
Fig.2  TEM image and orientation relation of magnetite / steel interface[40]
Fig.3  Mechanism of red scale formation in Si added hot rolled steel sheet [41]
Fig.4  Formation mechanism of red skin on silicon containing steel surface [42]: (a) oxide layer structure, (b) nailing structure distribution, (c) red rust distribution
Fig.5  Structure of corrosion resistant oxide layer and its corrosion resistance to salt spray [48]: (a) finished hot rolled steel, (b) oxide layer structure on the surface, (c) salt spray 2 h, (d) salt spray 4 h, (e) salt spray 6 h
Fig.6  Schematic diagram of the mechanism of hydrogen reduction oxide layer [51]
Fig.7  SEM morphologies of Fe3O4 precipitated from FeO surface[57]: (a) globular precipitation of magnetite particles on wustite surface, (b) fine lamellar precipitation of magnetite particles on wustite surface, (c) coarse lamellar precipitation of magnetite particles on wustite surface
Fig.8  Schematic illustration of magnetite precipitation from oxide scale during friction test [57]: (a) a small amount of Fe3O4 particles appear on the surface of FeO layer, (b) proeutectoid Fe3O4 appear in the FeO layer, (c) formation of Fe3O4 film, (d) typical three-layer structure of oxide layer
Fig.9  Schematic illustration of the role of nanoparticle in the surface oxide-scale cracking [65]
1 Neogi N, Mohanta D K, Dutta P K. Review of vision-based steel surface inspection systems [J]. J. Image Video Proc., 2014, 2014: 50
doi: 10.1186/1687-5281-2014-50
2 Liu Z Y, Li Z F. State of the art development on technology for new generation to controlling oxide scale of hot rolled plate and strip [J]. Steel Rolling, 2020, 37: 1
刘振宇, 李志峰. 新一代热轧板带材表面氧化铁皮控制技术的现状与进展 [J]. 轧钢, 2020, 37: 1
3 Hrabovský J, Dobeš F, Horský J. Small punch tests at oxide scales surface of structural steel and low silicon steel [J]. Oxid. Met., 2014, 82: 297
doi: 10.1007/s11085-014-9492-5
4 Basabe V V, Szpunar J A. Growth rate and phase composition of oxide scales during hot rolling of low carbon steel [J]. ISIJ Int., 2004, 44: 1554
doi: 10.2355/isijinternational.44.1554
5 Chen R Y, Yeun W Y D. Review of the high-temperature oxidation of iron and carbon steels in air or oxygen [J]. Oxid. Met., 2003, 59: 433
doi: 10.1023/A:1023685905159
6 Yu X L, Jiang Z Y, Zhao J W, et al. A comparison of texture development in an experimental and industrial tertiary oxide scale in a hot strip mill [J]. Metall. Mater. Trans., 2015, 46B: 2503
7 Birks N, Meier G H, Pettit F S. Introduction to the High Temperature Oxidation of Metals [M]. Cambridge: Cambridge University Press, 2006
8 Xia Z X, Zhang C, Huang X F, et al. Improve oxidation resistance at high temperature by nanocrystalline surface layer [J]. Sci. Rep., 2015, 5: 13027
doi: 10.1038/srep13027 pmid: 26269034
9 Yu X L, Jiang Z Y, Zhao J W, et al. A review of microstructure and microtexture of tertiary oxide scale in a hot strip mill [J]. Key Eng. Mater., 2016, 716: 843
doi: 10.4028/www.scientific.net/KEM.716
10 Yu X L, Jiang Z Y, Wang X D, et al. Effect of coiling temperature on oxide scale of hot-rolled strip [J]. Adv. Mater. Res., 2011, 415-417: 853
11 Young D J. High Temperature Oxidation and Corrosion of Metals [M]. 2nd ed. Amsterdam: Elsevier, 2016
12 Shi Q Q, Liu J, Wang W, et al. High temperature oxidation behavior of SIMP steel [J]. Oxid. Met., 2015, 83: 521
doi: 10.1007/s11085-015-9532-9
13 Movahedi-Rad A, Pelaseyed S S, Attarian M, et al. Oxidation behavior of AISI 321, AISI 316, and AISI 409 stainless steels: Kinetic, thermodynamic, and diffusion studies [J]. J. Mater. Res., 2016, 31: 2088
doi: 10.1557/jmr.2016.141
14 Seo H S, Yun D W, Kim K Y. Oxidation behavior of ferritic stainless steel containing Nb, Nb-Si and Nb-Ti for SOFC interconnect [J]. Int. J. Hydrogen Energy, 2013, 38: 2432
doi: 10.1016/j.ijhydene.2012.12.073
15 Davis J R. ASM Specialty Handbook: Carbon and Alloy Steels [M]. Metals Park, OH: ASM International, 1996
16 Gleeson B, Hadavi S M M, Young D J. Isothermal transformation behavior of thermally-grown wüstite [J]. Mater. High Temp., 2000, 17: 311
doi: 10.1179/mht.2000.17.2.020
17 Guo R M, Too J J M. Recent advances in heat transfer and micro-structure modelling for metal processing [A]. 1995 ASME International Mechanical Engineering Congress and Exposition [M]. San Francisco, California: American Society of Mechanical Engineers, 1995
18 Yuan J T, Wang W, Zhu S L, et al. Comparison between the oxidation of iron in oxygen and in steam at 650-750 °C [J]. Corros. Sci., 2013, 75: 309
doi: 10.1016/j.corsci.2013.06.014
19 Young D J. High Temperature Oxidation and Corrosion of Metals [M]. Amsterdam: Elsevier, 2008
20 Schütze M. Corrosion books: introduction to high temperature oxidation and corrosion. By: A. S. Khanna - materials and corrosion 5/2003 [J]. Mater. Corros., 2003, 54: 346
21 Wagner C. Equations for transport in solid oxides and sulfides of transition metals [J]. Prog. Solid State Chem., 1975, 10: 3
doi: 10.1016/0079-6786(75)90002-3
22 Wu W, Wu Z H, Yu T, et al. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications [J]. Sci. Technol. Adv. Mater., 2015, 16: 023501
23 Smeltzer W W. The kinetics of wüstite scale formation on iron [J]. Acta Metall., 1960, 8: 377
doi: 10.1016/0001-6160(60)90006-7
24 Atkinson A, O'dwyer M L, Taylor R I. 55Fe diffusion in magnetite crystals at 500 °C and its relevance to oxidation of iron [J]. J. Mater. Sci., 1983, 18: 2371
doi: 10.1007/BF00541841
25 Smeltzer W W, Young D J. Oxidation properties of transition metals [J]. Prog. Solid State Chem., 1975, 10: 17
doi: 10.1016/0079-6786(75)90003-5
26 Tozini D, Forti M, Gargano P, et al. Charge difference calculation in Fe/Fe3O4 interfaces from DFT results [J]. Proc. Mater. Sci., 2015, 9: 612
27 Juricic C., Pinto H., Cardinali D., et al. Evolution of microstructure and internal stresses in multi-phase oxide scales grown on (110) surfaces of iron single crystals at 650 °C [J]. Oxid. Met., 2010, 73: 115
doi: 10.1007/s11085-009-9166-x
28 Yu X L. A Study of Oxides Formed on Hot-Rolled Steel Strip [M]. Saarbrücken: LAP Lambert Academic Publishing, 2015
29 Chen R Y, Yuen W Y D. Oxidation of low-carbon, low-Silicon mild steel at 450-900 °C under conditions relevant to hot-strip processing [J]. Oxid. Met., 2002, 57: 53
doi: 10.1023/A:1013390628475
30 Wang J, Yu W, Dong E T, et al. Evolution of oxide structures of low-alloy steel surface during short-time oxidation at high temperature [A]. Han Y F. Advances in Materials Processing [M]. Singapore: Springer, 2018: 725
31 Matsuno F. Blistering and hydraulic removal of scale films of rimmed steel at high temperature [J]. ISIJ Int., 1980, 20: 413
doi: 10.2355/isijinternational1966.20.413
32 Chen R Y, Yuen W Y D. Short-time oxidation behavior of low-carbon, low-Silicon steel in air at 850-1180 °C: II. Linear to parabolic transition determined using existing gas-phase transport and solid-phase diffusion theories [J]. Oxid. Met., 2010, 73: 353
doi: 10.1007/s11085-009-9180-z
33 Raghavan V. Al-Fe-O (Aluminum-Iron-Oxygen) [J]. J. Phase Equilib. Diffus., 2010, 31: 367
doi: 10.1007/s11669-010-9712-x
34 Chen R Y, Yuen W Y D. A study of the scale structure of hot-rolled steel strip by simulated coiling and cooling [J]. Oxid. Met., 2000, 53: 539
doi: 10.1023/A:1004637127231
35 Krzyzanowski M, Beynon J H, Farrugia D C J. Oxide Scale Behavior in High Temperature Metal Processing [M]. Weinheim: John Wiley & Sons, 2010
36 Yu X L, Jiang Z Y, Zhao J W, et al. Crystallographic texture based analysis of Fe3O4/α-Fe2O3 scale formed on a hot-rolled microalloyed steel [J]. ISIJ Int., 2015, 55: 278
doi: 10.2355/isijinternational.55.278
37 Chattopadhyay A, Chanda T. Role of silicon on oxide morphology and pickling behaviour of automotive steels [J]. Scr. Mater., 2008, 58: 882
doi: 10.1016/j.scriptamat.2008.01.006
38 Peng Y. Research on organization structure and controlling of mechanical peeling properties of iron oxide organization of 72A cord steel wire rod [D]. Wuhan: Wuhan University of Science and Technology, 2018
彭 玉. 72A高碳钢盘条氧化铁皮组织结构及机械剥离性控制研究 [D]. 武汉: 武汉科技大学, 2018
39 Gong D G, Fang F, Jiang J Q, et al. Laser raman spectroscopy analysis on oxide scale of high carbon steel wire [J]. Phys. Test. Chem. Anal., 2008, 44A(11) : 609
巩党国, 方 峰, 蒋建清 等. 高碳钢盘条氧化皮的激光拉曼光谱分析 [J]. 理化检验: 物理分册, 2008, 44(11): 609
40 Kobayashi A, Seto K, Urabe T, et al. Effect of scale microstructure on scale adhesion of low carbon sheet steel [J]. Mater. Sci. Forum, 2006, 522/523: 409
41 Fukagawa T, Okada H, Maehara Y. Mechanism of red scale defect formation in Si-added hot-rolled steel sheets [J]. ISIJ Int., 1994, 34: 906
doi: 10.2355/isijinternational.34.906
42 Mouayd A A, Koltsov A, Sutter E, et al. Effect of silicon content in steel and oxidation temperature on scale growth and morphology [J]. Mater. Chem. Phys., 2014, 143: 996
doi: 10.1016/j.matchemphys.2013.10.037
43 Okada H, Fukagawa T, Ishihara H, et al. Prevention of red scale formation during hot rolling of steels [J]. ISIJ Int., 1995, 35: 886
doi: 10.2355/isijinternational.35.886
44 Cai J X, Cheng X Q, Zhao B J, et al. Study on the corrosion mechanism of the oxide scale on hot rolled steel in an atmospheric environment [J]. Anti-Corros. Methods Mater., 2019, 66: 163
45 Collazo A, Nóvoa X R, Pérez C, et al. EIS study of the rust converter effectiveness under different conditions [J]. Electrochim. Acta, 2008, 53: 7565
doi: 10.1016/j.electacta.2007.11.078
46 Macák J, Sajdl P, Kučera P, et al. In situ electrochemical impedance and noise measurements of corroding stainless steel in high temperature water [J]. Electrochim. Acta, 2006, 51: 3566
doi: 10.1016/j.electacta.2005.10.013
47 Dong C F, Xue H B, Li X G, et al. Electrochemical corrosion behavior of hot-rolled steel under oxide scale in chloride solution [J]. Electrochim. Acta, 2009, 54: 4223
doi: 10.1016/j.electacta.2009.02.080
48 Li C G, Shan W C, Liu Y S, et al. Corrosion resistance process based on control of oxide scale in whole process of hot rolling [J]. Iron Steel, 2021, 56: 129
李成刚, 单文超, 刘怡私 等. 基于热轧全流程氧化铁皮控制的耐蚀性工艺 [J]. 钢铁, 2021, 56: 129
49 Liu Y H, Ding C F, Li J C, et al. Study on the interface reaction layer of hydrogen reduction hot-rolled high-strength steel hot-dip galvanizing [J]. Mater. Res. Express, 2022, 9: 036403
50 Wu G X, Guan C, Tan N, et al. Effect of hot rolled substrate of hydrogen reduction on interfacial reaction layer of hot-dip galvanizing [J]. J. Mater. Process. Technol., 2018, 259: 134
doi: 10.1016/j.jmatprotec.2018.04.027
51 He Y Q. Research and application of hot dip galvanizing of hot-rolled steel strip without pickling [D]. Shenyang: Northeastern University, 2015: 107
何永全. 热轧带钢免酸洗还原热镀锌工艺研究与应用 [D]. 沈阳: 东北大学, 2015: 107
52 Chen L, Fourmentin R, Mc Dermid J R. Morphology and kinetics of interfacial layer formation during continuous hot-dip galvanizing and galvannealing [J]. Metall. Mater. Trans., 2008, 39A: 2128
53 Wang K K, Chang L W, Gan D, et al. Heteroepitaxial growth of Fe2Al5 inhibition layer in hot-dip galvanizing of an interstitial-free steel [J]. Thin Solid Films, 2010, 518: 1935
doi: 10.1016/j.tsf.2009.07.154
54 Rudkins N T, Hartley P, Pillinger I, et al. Friction modelling and experimental observations in hot ring compression tests [J]. J. Mater. Process. Technol., 1996, 60: 349
doi: 10.1016/0924-0136(96)02353-9
55 Munther P A, Lenard J G. The effect of scaling on interfacial friction in hot rolling of steels [J]. J. Mater. Process. Technol., 1999, 88: 105
doi: 10.1016/S0924-0136(98)00392-6
56 Jin W, Piereder D, Lenard J G. A study of the coefficient of friction during hot rolling of a ferritic stainless steel [J]. Lubricat. Eng., 2002, 58: 29
57 Yu X L, Jiang Z Y, Wei D B, et al. Tribological properties of magnetite precipitate from oxide scale in hot-rolled microalloyed steel [J]. Wear, 2013, 302: 1286
doi: 10.1016/j.wear.2013.01.015
58 Jiang J, Stott F H, Stack M M. A mathematical model for sliding wear of metals at elevated temperatures [J]. Wear, 1995, 181-183: 20
doi: 10.1016/0043-1648(94)07031-8
59 Kim B K, Szpunar J A. Orientation imaging microscopy in research on high temperature oxidation [A]. SchwartzAJ, KumarM, AdamsBL, et al. Electron Backscatter Diffraction in Materials Science [M]. 2nd ed. New York: Springer, 2009: 361
60 Pauschitz A, Roy M, Franek F. Mechanisms of sliding wear of metals and alloys at elevated temperatures [J]. Tribol. Int., 2008, 41: 584
doi: 10.1016/j.triboint.2007.10.003
61 Rapoport L, Leshchinsky V, Lvovsky M, et al. Mechanism of friction of fullerenes [J]. Ind. Lubricat. Tribol., 2002, 54: 171
doi: 10.1108/00368790210431727
62 Wang Y X, Li J L, Shan L, et al. Tribological performances of the graphite-like carbon films deposited with different target powers in ambient air and distilled water [J]. Tribol. Int., 2014, 73: 17
doi: 10.1016/j.triboint.2013.12.022
63 Liu G, Li X, Qin B, et al. Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface [J]. Tribol. Lett., 2004, 17: 961
doi: 10.1007/s11249-004-8109-6
64 Lee K, Hwang Y, Cheong S, et al. Understanding the role of nanoparticles in nano-oil lubrication [J]. Tribol. Lett., 2009, 35: 127
doi: 10.1007/s11249-009-9441-7
65 Yu X L, Jiang Z Y, Zhao J W, et al. The role of oxide-scale microtexture on tribological behaviour in the nanoparticle lubrication of hot rolling [J]. Tribol. Int., 2016, 93: 190
doi: 10.1016/j.triboint.2015.08.049
[1] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[2] SHI Jian, HU Xuewen, HE Bo, PU Hong, GUO Rui, WANG Fei. Effect of Cr-Sb Addition on Atmospheric Corrosion Resistance of Economical High Weathering Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1159-1164.
[3] HU Jiezhen, LAN Wenjie, DENG Peichang, WU Jingquan, ZENG Junhao. Corrosion Behavior of E690 Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[4] LI Jiayuan, ZENG Tianhao, LIU Youtong, WU Xiaochun. Corrosion Behavior of 4Cr16Mo Martensite Stainless Steel with 1% Cu Addition by Applied Stress[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[5] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[6] LIU Wei. Asymmetric Surface Configuration for Electrochemical Noise Measurement on Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[7] SHI Jianguang, CHEN Yinping, LI Guocong, XIE Yiren. Effect of Different Interface Treatment Processes on Anti-stripping Performance of Low Shrinkage-high Viscosity Multi-element Composite Mortar Repaired Concrete Workpiece[J]. 中国腐蚀与防护学报, 2023, 43(5): 1119-1125.
[8] LI Zhongcheng, CHEN Shenggang, GUO Quanquan, GUO Junying. Research on Corrosion Mechanism of Steel Liner of Nuclear Containment Vessel Based on COMSOL Model[J]. 中国腐蚀与防护学报, 2023, 43(5): 1133-1139.
[9] HU Jiezhen, SHANGGUAN Juyu, DENG Peichang, FENG Qilan, WANG Gui, WANG Peilin. Effect of Barnacle Adhesion on Corrosion Behavior of Q235 Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[10] MAO Feixiong, ZHOU Yuting, YAO Wenqing, SHEN Xiang, XIAO Long, LI Minghui. Growth Kinetics of Steady-state Passive Film on Type 304 Stainless Steel Based on Point Defect Model[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[11] YU Bo, LI Zhang, ZHOU Kaixuan, TIAN Haoliang, FANG Yongchao, ZHANG Xiaomin, JIN Guo. High-temperature Performance of MoSi2 Modified YGYZ Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.
[12] LI Qiang, LU Cheng, TANG Yinghao, TANG Jianfeng, LIU Bingcheng. Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[13] YUAN Lei, XIE Xin, CHEN Minghui, LI Fengjie, WANG Fuhui. Air Oxidation and NaCl Corrosion Behavior of 20 Steel Without and with Enamel Coating at 400 °C[J]. 中国腐蚀与防护学报, 2023, 43(4): 890-895.
[14] WU Jiajia, XU Ming, WANG Peng, ZHANG Dun. Impact of Nitrate Addition on EH40 Steel Corrosion in Natural Seawater[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[15] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
No Suggested Reading articles found!