Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (5): 1071-1078    DOI: 10.11902/1005.4537.2022.356
Current Issue | Archive | Adv Search |
Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy
LUO Weihua, WANG Haitao(), YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong
SunRui Marine Environment Engineering Company Ltd., Qingdao 266101, China
Download:  HTML  PDF(9106KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Al-Zn-0.03In-1.30Mg sacrificial anode alloys with various Zn contents were designed and prepared. The effect of Zn content on the electrochemical properties of the Al-Zn-0.03In-1.30Mg anode alloys were investigated by AC impedance spectroscopy, galvanostatic- and potentiodynamic-polarization measurements. While the effect of Zn content on the microstructure and corrosion morphology of the alloys were analyzed by metallographic microscope, scanning electron microscope (SEM) and energy dispersive analysis (EDS). The results showed that with the increasing Zn content the grain size of Al-Zn-0.03In-1.30Mg alloys became finer with more uniform microstructure, whilst the free-corrosion current density shifted significantly in the negative direction. The addition of 0.60%-10.00% (mass fraction) Zn could effectively destroy the passive film on the alloy surface and improve the dissolution morphology of the anode alloy. But when the content of Zn excesses 5.00%, dendrites were generated, which would increase local corrosion tendency to make the alloy dissolve ununiformly with decreasing electrochemical properties. The anode alloys with 0.60%~2.00%Zn all exhibited high electrochemical performance, of which the surface dissolved uniformly with a capacity over 2570 A·h·kg-1, and the working potential lower than -1.05 V (vs SCE). The anode alloy with 0.60% Zn could significantly reduce the heavy metal Zn pollution to the marine environment. Therefore, it could be used as environment-friendly sacrificial anode material.

Key words:  aluminum alloy sacrificial anode      corrosion      current efficiency      EIS      microstructure     
Received:  17 November 2022      32134.14.1005.4537.2022.356
ZTFLH:  TG174.41  
Corresponding Authors:  WANG Haitao, E-mail: wanght@sunrui.net   

Cite this article: 

LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1071-1078.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.356     OR     https://www.jcscp.org/EN/Y2023/V43/I5/1071

No.ZnInMgAl
1#-0.03191.1966Bal.
2#0.20800.02681.1488Bal.
3#0.61190.02901.2212Bal.
4#2.09370.03071.0904Bal.
5#5.14670.03101.1054Bal.
6#9.93470.03301.1804Bal.
Table 1  Composition of Al-Zn-0.03In-1.30Mg anode
Fig.1  Circuit diagram of test device
Time / hCurrent density / mA·cm-2
0-241.5
24-480.4
48-724.0
72-961.5
Table 2  Current density of 4d experiment
Fig.2  Metallographic structure of Al-Zn-0.03In-1.30Mg anode with Zn content of 0 (a), 0.20% (b), 0.60% (c), 2.00% (d), 5.00% (e) and 10.00% (f)
No.CompositionOCP/VClosed-circuit potential (96 h) / VCapacity / A·h·kg-1Current efficiency
1#Al-0.03In-1.30Mg-1.14-0.86266590%
2#Al-0.20Zn-0.03In-1.30Mg-1.11-1.09279594%
3#Al-0.60Zn-0.03In-1.30Mg-1.10-1.13257887%
4#Al-2.00Zn-0.03In-1.30Mg-1.10-1.12257388%
5#Al-5.00Zn-0.03In-1.30Mg-1.07-1.09247987%
6#Al-10.00Zn-0.03In-1.30Mg-1.09-1.06231084%
Table 3  Experimental results of electrochemical performance of Al-Zn-0.03In-1.30Mg anode
Fig.3  Dissolution morphology of Al-Zn-0.03In-1.30Mg anode with Zn content of 0 (a), 0.20% (b), 0.60% (c), 2.00% (d), 5.00% (e) and 10.00% (f)
Fig.4  EDS diagram of Al-Zn-0.03In-1.30Mg anode with Zn content of 0.60% (a), 2.00% (b) and 10.00% (c)
Fig.5  Anode polarization curves of Al-Zn-0.03In-1.30Mg anode
No.Compositionba / mV·dec-1Ecorr / VIcorr / A·cm-2
1#Al-0.03In-1.30Mg227-1.011.22×10-6
2#Al-0.20Zn-0.03In-1.30Mg156-1.071.18×10-6
3#Al-0.60Zn-0.03In-1.30Mg82-1.181.13×10-6
4#Al-2.00Zn-0.03In-1.30Mg57-1.215.36×10-7
5#Al-5.00Zn-0.03In-1.30Mg48-1.172.09×10-7
6#Al-10.00Zn-0.03In-1.30Mg47-1.203.45×10-7
Table 4  Fitting results of polarization curves
Fig.6  Nyquist plot of Al-Zn-0.03In-1.30Mg anode
No.Composition

Rs

Ω·cm2

CPE

Ω-1·cm2·s-1

n

0<n<1

Rt

Ω·cm2

L

H·cm2

R1

Ω·cm2

1#Al-0.03In-1.30Mg1.581.89×10-50.882.01×104//
2#Al-0.20Zn-0.03In-1.30Mg1.783.54×10-50.801.95×104//
3#Al-0.60Zn-0.03In-1.30Mg2.402.81×10-50.823.83×1031402758
4#Al-2.00Zn-0.03In-1.30Mg1.623.37×10-50.842.03×103847939
5#Al-5.00Zn-0.03In-1.30Mg1.742.56×10-50.843.60×1036631786
6#Al-10.00Zn-0.03In-1.30Mg1.693.42×10-50.821.91×10314931393
Table 5  Fitting values of Al-Zn-0.03In-1.30Mg anode derived from EIS curves
1 Song Y H, Guo Z C, Fan A M, et al. Current state of research on sacrificial anode materials [J]. Corros. Sci. Prot. Technol., 2004, 16: 24
宋曰海, 郭忠诚, 樊爱民 等. 牺牲阳极材料的研究现状 [J]. 腐蚀科学与防护技术, 2004, 16: 24
2 Guo Z C, Song Y H, Geng W D. High performance Al-Zn-In series sacrificial anode materials [J]. Mater. Mech. Eng., 2005, 29(12): 38
郭忠诚, 宋曰海, 耿卫东. 铝-锌-铟系列高性能牺牲阳极材料的研究 [J]. 机械工程材料, 2005, 29(12): 38
3 Yang Z H, Liu B, Li X Y, et al. Application and progress of sacrificial anodes used in the cathodic protection of warships [J]. Mater. China, 2014, 33: 618
杨朝晖, 刘 斌, 李向阳 等. 牺牲阳极在舰船阴极保护中的应用和进展 [J]. 中国材料进展, 2014, 33: 618
4 Zhang W Y, Wang X Y, Xi L J, et al. Research progress of sacrificial anode materials in cathodic protection technology [J]. Corros. Sci. Prot. Technol., 2013, 25: 420
张万友, 王鑫焱, 郗丽娟 等. 阴极保护技术中牺牲阳极材料的研究进展 [J]. 腐蚀科学与防护技术, 2013, 25: 420
5 Lei B, Zhang H, Hu S N, et al. Development of sacrificial anode under deep sea environment [J]. Total Corros. Control, 2016, 30(12): 18
雷 冰, 张 华, 胡胜楠 等. 深海环境用牺牲阳极材料研究进展 [J]. 全面腐蚀控制, 2016, 30(12): 18
6 Zhang M D, Huang B J, Xiao M R, et al. Toxic effects of zinc on organisms and research prospects [J]. J. Green Sci. Technol., 2014, (12): 142
张梦蝶, 黄碧捷, 肖梦茹 等. 锌对生物体的毒性效应与研究展望 [J]. 绿色科技, 2014, (12): 142
7 Bao Y E, Ma J R. Variation in zinc contents of sea water and sediment in Dalian Bay [J]. Acta Sci. Circumst., 1990, 10: 371
鲍永恩, 马嘉蕊. 大连湾锌的集散特征及变化动态 [J]. 环境科学学报, 1990, 10: 371
8 Gao M, Wu X, Klerks P L, et al. Metal levels in seafood of the Huludao coast and associated health risks [J]. Chin. J. Ecol., 2016, 35: 205
高 蜜, 吴 星, Klerks P L 等. 葫芦岛海产品重金属含量及健康风险分析 [J]. 生态学杂志, 2016, 35: 205
9 Huang W. Toxicological effects of mercury, lead and zinc on the early developmental process of flounder (Paralichthys olivaceus) [D]. Qingdao: Graduate School of Chinese Academy of Sciences (Institute of Oceanography), 2010: 60
黄 伟. 汞、铅、锌对褐牙鲆 (Paralichthys olivaceus) 早期发育过程毒理作用的研究 [D]. 青岛: 中国科学院研究生院 (海洋研究所), 2010: 60
10 Wang S S, Liang C H, Huang N B, et al. Research progress of aluminum based sacrificial anode [J]. Corros. Sci. Prot. Technol., 2011, 23: 369
王树森, 梁成浩, 黄乃宝 等. 铝基牺牲阳极研究进展 [J]. 腐蚀科学与防护技术, 2011, 23: 369
11 Kong X D, Zhu M W, Ding Z B, et al. Progress in aluminium alloy sacrificial anode [J]. Chin. J. Rare Met., 2003, 27: 376
孔小东, 朱梅五, 丁振斌 等. 铝合金牺牲阳极研究进展 [J]. 稀有金属, 2003, 27: 376
12 Hou D L, Song Y Q, Li D F, et al. Research and development on aluminum alloy anode materials [J]. Chin. J. Rare Met., 2009, 33: 96
侯德龙, 宋月清, 李德富 等. 铝基牺牲阳极材料的研究与开发 [J]. 稀有金属, 2009, 33: 96
13 Hao X J, Song S Z. EIS study of activation mechanism of zinc in aluminum zinc alloy [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 213
郝小军, 宋诗哲. 铝锌合金在3%NaCl溶液中的电化学行为 [J]. 中国腐蚀与防护学报, 2005, 25: 213
14 Lu L B, Tang Y G, Wang L W. Effect of zinc on aluminum-indium anode [J]. Chin. J. Power Sources, 2003, 27: 274
卢凌彬, 唐有根, 王来稳. 锌对铝铟阳极的影响 [J]. 电源技术, 2003, 27: 274
15 Li W L, Yan Y G, Chen G, et al. Effect of alloy elements on electrochemical performance of aluminum sacrificial anode [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 127
李威力, 闫永贵, 陈 光 等. 合金元素对铝基牺牲阳极性能的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 127
16 Liu C R, Han L, Wang Q J, et al. Influence of magnesium contents on microstructure and electrochemistry behaviors of aluminum alloys for sacrificial anodes [J]. Light Alloy Fabricat. Technol., 2007, 35(4): 40
刘长瑞, 韩 莉, 王庆娟 等. 镁含量对铝阳极材料组织和电化学性能的影响 [J]. 轻合金加工技术, 2007, 35(4): 40
17 Wu T. The effect of Al/Mg intermetallic compounds on the electrochemical properties of aluminum-magnesium sacrificial anode materials [D]. Xi'an: Xi'an University of Architecture and Technology, 2010
吴 瞳. Al/Mg金属间化合物相对铝镁系牺牲阳极材料电化学性能的影响研究 [D]. 西安: 西安建筑科技大学, 2010
18 Zhang X Y, Wang Y X, Huo S Z. Study on electrochemical properties of Al-Zn-Mg-In-Ga-Ca alloy sacrificial anode [J]. Corros. Sci. Prot. Technol., 1995, 7: 53
张信义, 王元玺, 火时中. Al-Zn-Mg-In-Ga-Ca合金牺牲阳极电化学性能的研究 [J]. 腐蚀科学与防护技术, 1995, 7: 53
19 Wu Y H. A study of the effect of alloy elements on the activation of al-based sacrificial anode [J]. J. Chin. Soc. Corros. Prot., 1989, 9: 113
吴益华. 合金元素在铝基牺牲阳极活化过程中的作用 [J]. 中国腐蚀与防护学报, 1989, 9: 113
20 Zhang H B, Zhang Y H, Ma L, et al. Electrochemical performance of sacrificial anodes in alternating depth and shallowness of seawater environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 867
张海兵, 张一晗, 马 力 等. 深浅交变环境牺牲阳极电化学性能研究[J]. 中国腐蚀与防护学报, 2022, 42: 867
doi: 10.11902/1005.4537.2021.293
21 Zhao Y H, Liu K X, Hou H, et al. Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: A phase field study [J]. Mater. Des., 2022, 216: 110555
doi: 10.1016/j.matdes.2022.110555
22 Sato F, Newman R C. Mechanism of activation of aluminum by low-melting point elements: Part 2—Effect of zinc on activation of aluminum in pitting corrosion [J]. Corrosion, 1999, 55: 3
doi: 10.5006/1.3283964
23 Salinas D R, García S G, Bessone J B. Influence of alloying elements and microstructure on aluminium sacrificial anode performance: Case of Al-Zn [J]. J. Appl. Electrochem., 1999, 29: 1063
doi: 10.1023/A:1003684219989
24 Guo W, Wen J B, Ma J L, et al. Research progress of aluminium alloy sacrificial anode materials [J]. Corros. Prot., 2008, 29: 495
郭 炜, 文九巴, 马景灵 等. 铝合金牺牲阳极材料的研究现状 [J]. 腐蚀与防护, 2008, 29: 495
25 Reboul M C, Gimenez P H, Rameau J J. A proposed activation mechanism for Al anodes [J]. Corrosion, 1984, 40: 366
doi: 10.5006/1.3593939
26 Xu H Y, Li Y B. Activation behavior of aluminum sacrificial anodes in sea water [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 186
徐宏妍, 李延斌. 铝基牺牲阳极在海水中的活化行为 [J]. 中国腐蚀与防护学报, 2008, 28: 186
27 Cao C N. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state—I. One state variable besides electrode potential [J]. Electrochim. Acta, 1990, 35: 831
doi: 10.1016/0013-4686(90)90077-D
28 Sun H J, Qin M, Li L. Performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated low dissolved oxygen deep water environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 508
孙海静, 覃 明, 李 琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 508
doi: 10.11902/1005.4537.2019.180
[1] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[2] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[3] YAO Yong, LIU Guojun, LI Shizhu, LIU Miaoran, CHEN Chuan, HUANG Tingcheng, LIN Hai, LI Zhanjiang, LIU Yuwei, WANG Zhenyao. Research Progress on Corrosion Prediction Model of Metallic Materials for Electrical Equipment[J]. 中国腐蚀与防护学报, 2023, 43(5): 983-991.
[4] XUAN Xingyu, QU Shaopeng, ZHAO Xingya. Preparation and Performance of CeO2@MWCNTs/EP Composite Coatings[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[5] SHI Jian, HU Xuewen, HE Bo, PU Hong, GUO Rui, WANG Fei. Effect of Cr-Sb Addition on Atmospheric Corrosion Resistance of Economical High Weathering Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1159-1164.
[6] HU Jiezhen, LAN Wenjie, DENG Peichang, WU Jingquan, ZENG Junhao. Corrosion Behavior of E690 Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[7] LI Jiayuan, ZENG Tianhao, LIU Youtong, WU Xiaochun. Corrosion Behavior of 4Cr16Mo Martensite Stainless Steel with 1% Cu Addition by Applied Stress[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[8] GU Yuhui, DONG Liang, SONG Qinfeng. Preparation of Micro Metal Oxide pH Electrode and Its Application in Corrosion and Protection[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[9] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[10] LIU Wei. Asymmetric Surface Configuration for Electrochemical Noise Measurement on Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[11] CHEN Xiaohan, BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang. Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[12] LI Tianyu, WANG Weikang, LI Yangtao, BAO Tengfei, ZHAO Mengfan, SHEN Xinxin, NI Lei, MA Qinglei, TIAN Huiwen. Corrosion Failure Mechanism of Ultra-high-performance Concretes Prepared with Sea Water and Sea Sand in an Artificial Sea Water Containing Sulfate[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[13] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[14] GAO Qiuying, ZENG Wenguang, WANG Heng, LIU Yuancong, HU Junying. Effect of Fluid Scouring on Sulfate Reducting Bacteria Induced Corrosion of Pipeline Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[15] CHEN Zhenyu, ZHU Zhongliang, MA Chenhao, ZHANG Naiqiang, LIU Yutong. Effect of Different Loading Conditions on Corrosion Fatigue Crack Growth Rate of Nickel Base Alloy 617 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
No Suggested Reading articles found!