Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (5): 1079-1086    DOI: 10.11902/1005.4537.2022.288
Current Issue | Archive | Adv Search |
Cavitation Resistance of NiCoCrFeNb0.45 Eutectic High Entropy Alloy for Hydraulic Machinery
WANG Kai1, LI Chenpei2, LU Jinling1(), WANG Zhenjiang1, WANG Wei1
1.State Key Laboratory of Eco-hydraulic in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
2.Science and Technology on Liquid Rocket Engine Laboratory, Xi'an Aerospace Propulsion Institute, Xi'an 710010, China
Download:  HTML  PDF(8573KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The cavitation resistance of a new eutectic high entropy alloy NiCoCrFeNb0.45 was assessed via a home-made jet cavitation experimental device. While a new characterization method for cavitation damage, based on image intelligent recognition, was developed by using gray level co-occurrence matrix and binary image method. Therewith, the digital analysis of cavitation damage distribution and the microscopic assessment of local cavitation damage could be realized. The results show that the primary cavitation damage mechanism of NiCoCrFeNb0.45 is the deformable pits caused by repeated cavitation collapse, as well as the fatigue cracks induced by the work hardening. The dual-phase eutectic structure of NiCoCrFeNb0.45 is composed of Laves phase with high hardness and FCC phase with high toughness, which achieves the balance between high hardness and high toughness. As a result, NiCoCrFeNb0.45 has a superior cavitation damage resistance, compared with 04Cr13Ni5Mo and 45 steel. The characteristic parameters, such as standard deviation, energy value and entropy value of cavitation image, are extracted by gray level co-occurrence matrix, and these parameters show that the distribution of cavitation damage for NiCoCrFeNb0.45 is the simplest, and the degree of cavitation damage is the lowest. The image binarization method could help to obtain the regularity of distribution of large-scale pits on the material surface. The cavitation damage ratio of NiCoCrFeNb0.45 is 8.1%, which is significantly lower than that of the other two materials. This study provides a new reference for cavitation damage assessment and material protection for hydraulic machinery.

Key words:  hydraulic machinery      anti-cavitation material      image recognition      eutectic high entropy alloy      damage evaluation     
Received:  16 September 2022      32134.14.1005.4537.2022.288
ZTFLH:  TH312  
Fund: National Natural Science Foundation of China(51879216);National Natural Science Foundation of China(51906200);National Natural Science Foundation of China(51906201);Key Laboratory Foundation of Education Department of Shaanxi(19JS045)
Corresponding Authors:  LU Jinling, E-mail: jinling_lu@163.com   

Cite this article: 

WANG Kai, LI Chenpei, LU Jinling, WANG Zhenjiang, WANG Wei. Cavitation Resistance of NiCoCrFeNb0.45 Eutectic High Entropy Alloy for Hydraulic Machinery. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1079-1086.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.288     OR     https://www.jcscp.org/EN/Y2023/V43/I5/1079

Fig.1  Jet cavitation test equipment
Fig.2  Schematic diagram of the structure of nozzle
Fig.3  Cavitation roughnesses of three test materials
Fig.4  Surface morphologies of NiCoCrFeNb0.45 (a), 04Cr13Ni5Mo (b) and 45 steel (c) after cavitation
Fig.5  Damage features of the surface of NiCoCrFe-Nb0.45: (a) deformation pits, (b) fatigue cracks
Fig.6  Distribution of surface gray values for NiCoCr-FeNb0.45 (a), 04Cr13Ni5Mo (b) and 45 steel (c)
MaterialStandard deviationEenergyEentropy
NiCoCrFeNb0.4526.8970.0166.458
04Cr13Ni5Mo29.6610.0126.783
45 steel50.1260.0087.289
Table 1  Extracted gray feature values of cavitation morphology
Fig.7  Three-dimensional cavitation morphologies of NiCoCrFeNb0.45 (a), 04Cr13Ni5Mo (b) and 45 steel (c)
Fig.8  Distribution of the areas of pits on NiCoCrFe-Nb0.45 (a), 04Cr13Ni5Mo (b) and 45 steel (c)
1 Tong Y, Song Q N, Li H L, et al. A comparative assessment on cavitation erosion behavior of typical copper alloys used for ship propeller [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 639
佟 瑶, 宋亓宁, 李慧琳 等. 三种典型船舶螺旋桨用铜合金的空蚀行为对比研究 [J]. 中国腐蚀与防护学报, 2021, 41: 639
2 Wang J, Liu H L, Dular M. Experiment on cavitation erosion mechanism of centrifugal hydraulic cavitation generator [J]. Trans. CSAE, 2017, 33(14): 49
王 健, 刘厚林, Dular M. 离心式水力空化发生器空化空蚀机制试验研究 [J]. 农业工程学报, 2017, 33(14): 49
3 Brijkishore N, Khare R, Prasad V. Prediction of cavitation and its mitigation techniques in hydraulic turbines - A review [J]. Ocean Eng., 2021, 221: 108512
doi: 10.1016/j.oceaneng.2020.108512
4 Luo X W, Ji B, Tsujimoto Y. A review of cavitation in hydraulic machinery [J]. J. Hydrodyn., 2016, 28: 335
doi: 10.1016/S1001-6058(16)60638-8
5 Zhu G J, Li K, Feng J J, et al. Effects of cavitation on pressure fluctuation of draft tube and runner vibration in a Kaplan turbine [J]. Trans. CSAE, 2021, 37(11): 40
朱国俊, 李 康, 冯建军 等. 空化对轴流式水轮机尾水管压力脉动和转轮振动的影响 [J]. 农业工程学报, 2021, 37(11): 40
6 Mousmoulis G, Anagnostopoulos J, Papantonis D. A review of experimental detection methods of cavitation in centrifugal pumps and inducers [J]. Int. J. Fluid Mach. Syst., 2019, 12: 71
doi: 10.5293/IJFMS.2019.12.1.071
7 Sun L G, Guo P C, Zheng X B, et al. Characteristics of high-amplitude pressure fluctuation induced by inter-blade cavitation vortex in Francis turbine [J]. Trans. CSAE, 2021, 37(21): 62
孙龙刚, 郭鹏程, 郑小波 等. 混流式水轮机叶道空化涡诱发高振幅压力脉动特性 [J]. 农业工程学报, 2021, 37(21): 62
8 Nair R B, Arora H S, Mandal P, et al. Complex concentrated coatings: effect of processing route on microstructural and mechanical properties [J]. Mater. Lett., 2018, 230: 100
doi: 10.1016/j.matlet.2018.07.088
9 Nair R B, Arora H S, Grewal H S. Microwave synthesized complex concentrated alloy coatings: plausible solution to cavitation induced erosion-corrosion [J]. Ultrason. Sonochem., 2019, 50: 114
doi: S1350-4177(18)30515-7 pmid: 30219354
10 Song Q N, Wu Z Y, Li H L, et al. Effect of laser surface melting on cavitation erosion of manganese-nickel-aluminum bronze in 3.5% NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 877
宋亓宁, 武竹雨, 李慧琳 等. 激光重熔对高锰铝青铜在3.5%NaCl溶液中空蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 877
doi: 10.11902/1005.4537.2020.201
11 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/(ISSN)1527-2648
12 Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys [J]. Acta Mater., 2013, 61: 2628
doi: 10.1016/j.actamat.2013.01.042
13 Yeh J W. Alloy design strategies and future trends in high-entropy alloys [J]. JOM, 2013, 65: 1759
doi: 10.1007/s11837-013-0761-6
14 Li R, Ren J, Zhang G J, et al. Novel (CoFe2NiV0.5Mo0.2)100- x Nb x eutectic high-entropy alloys with excellent combination of mechanical and corrosion properties [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1046
doi: 10.1007/s40195-020-01072-6
15 Lu Y P, Jiang H, Guo S, et al. A new strategy to design eutectic high-entropy alloys using mixing enthalpy [J]. Intermetallics, 2017, 91: 124
doi: 10.1016/j.intermet.2017.09.001
16 Zhao J H, Ma A B, Ji X L, et al. Slurry erosion behavior of Al x CoCrFeNiTi0.5 high-entropy alloy coatings fabricated by laser cladding [J]. Metals, 2018, 8: 126
doi: 10.3390/met8020126
17 Jiang H, Li L, Wang R, et al. Effects of chromium on the microstructures and mechanical properties of AlCoCr x FeNi2.1 eutectic high entropy alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1565
doi: 10.1007/s40195-021-01303-4
18 Lü Z P, Lei Z F, Huang H L, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
doi: 10.11900/0412.1961.2018.00372
吕昭平, 雷智锋, 黄海龙 等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54: 1553
doi: 10.11900/0412.1961.2018.00372
19 Liu W H, He J Y, Huang H L, et al. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys [J]. Intermetallics, 2015, 60: 1
doi: 10.1016/j.intermet.2015.01.004
20 Xia Y. A study on corrosion detection for Q235 steel in seawater based on image analysis [D]. Dalian: Dalian University of Technology, 2017
夏 莹. 基于图像分析的Q235钢海水腐蚀检测技术研究 [D]. 大连: 大连理工大学, 2017
21 Fajardo J I, Paltán C A, López L M, et al. Textural analysis by means of a gray level co-occurrence matrix method. Case: Corrosion in steam piping systems [J]. Mater. Today: Proc., 2022, 49: 149
22 Bondada V, Pratihar D K, Kumar C S. Detection and quantitative assessment of corrosion on pipelines through image analysis [J]. Proc. Comput. Sci., 2018, 133: 804
doi: 10.1016/j.procs.2018.07.115
23 Yang C M. The experimental research of metal surface strengthening of jet cavitation peening [D]. Xuzhou: China University of Mining and Technology, 2014
杨春敏. 空化射流喷丸对金属表面性能强化影响的试验研究 [D]. 徐州: 中国矿业大学, 2014
24 Li Z. Feature recognition of corrosion pits and fatigue life prediction for pre-corroded aluminum alloy [D]. Xiamen: Xiamen University, 2014
李 智. 铝合金点蚀坑特征识别及其疲劳寿命预测 [D]. 厦门: 厦门大学, 2014
[1] WANG Minghao, WANG Huan, LIU Rui, MENG Fandi, LIU Li, WANG Fuhui. Research on Image Recognition for NiCrAlY Coating/N5 High-temperature Alloy System Based on Deep Learning Method[J]. 中国腐蚀与防护学报, 2022, 42(4): 583-589.
No Suggested Reading articles found!