Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 683-692    DOI: 10.11902/1005.4537.2023.140
Current Issue | Archive | Adv Search |
Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone
DENG Chengman1,2, LIU Zhe1,2, XIA Da-Hai1,2(), HU Wenbin1,2
1.Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300350, China
2.School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
Download:  HTML  PDF(11386KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The localized corrosion of 5083-H111 Al alloy in a simulated dynamic seawater zone was investigated by open circuit potential (OCP) measurement, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results revealed that, in the simulated dynamic seawater, 5083-H111 Al alloy generated visible pitting corrosion caused by the intermetallic particles (IMPs). These IMPs were composed of Al-Fe phase and Mg-Si phase, Al-Fe phase acted as a cathode during the corrosion, forming a micro-corrosion cell with the surrounding Al matrix, accelerating the corrosion of the Al matrix. Mg-Si phase was firstly acted as anode, the selective dissolution of Mg in the Mg-Si particles results in a de-alloyed outer layer on the exposed surfaces and forms Si-containing phase, then the Si-containing phase acted as cathode, prompting pitting corrosion of Al matrix. The corrosion products generated on the surface of 5083-H111 Al alloy were Al(OH)3, Al2O3·6H2O and AlCl3. These corrosion products provided a good protection to the Al matrix in the early stage of corrosion (1-36 d), resulting in a positive shift in OCP and an increase in the polarization resistance Rp. However, in the later stage of corrosion (36-56 d), the initial corrosion products were partially detached, leading to localized corrosion again at the detachment position, resulting in a negative shift of OCP and a sharp decrease in Rp. Finally, with the prolongation of exposed time, some IMPs detached from the corrosion pits, forming corrosion cavities.

Key words:  5083-H111 Al alloy      dynamic seawater zone      localized corrosion      intermetallic particles      electrochemical impedance spectroscopy     
Received:  06 May 2023      32134.14.1005.4537.2023.140
ZTFLH:  O646  
Fund: National Natural Science Foundation of China(52171077)
Corresponding Authors:  XIA Da-Hai, E-mail: dahaixia@tju.edu.cn   

Cite this article: 

DENG Chengman, LIU Zhe, XIA Da-Hai, HU Wenbin. Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 683-692.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.140     OR     https://www.jcscp.org/EN/Y2023/V43/I4/683

Fig.1  Microscopic corrosion morphologies for 5083-H111 Al alloy exposed to a simulated dynamic seawater zone for 36 d (a) and 56 d (b, c)
Fig.2  Pitting corrosion of 5083-H111 Al alloy exposed to a simulated dynamic seawater zone for 56 d caused by intermetallic particles (IMPs): (a) pitting corrosion and corrosion product film, (b) enlarged image of the part marked by black dashed frame in Fig.2a
Fig.3  Microscopic morphologies and elements distribution of IMPs in 5083-H111 Al alloy exposed to a simulated dynamic seawater zone for 56 d: (a) large-size of Al-Fe phase, (b) small-size of Al-Fe phase
Fig.4  Microscopic morphologies (a, b) of 5083-H111 Al alloy exposed to a simulated dynamic seawater zone for 56 d after removed the corrosion products and the EDS (c) corresponding to Fig.4b
Fig.5  Detachment of intermetallic compounds after 5083-H111 Al alloy exposed to a simulated dynamic seawater zone for 56 d: (a) complete detachment, (b) partial detachment
Fig.6  Morphologies of corrosion product film of 5083-H111 Al alloy after exposed to a simulated dynamic seawater zone for 56 d: (a) corrosion product film and oxide film, (b) detachment of corrosion product film
Fig.7  Microstructures of corrosion products of 5083-H111 Al alloy after exposed to a simulated dynamic seawater zone for 56 d: (a, b) lamellar and lath corrosion products, (c) enlarged of lamellar corrosion products, (d) enlarged of lath corrosion products
Fig.8  XPS results of corrosion products generated on the surface of 5083-H111 Al alloy after exposed to a simulated dynamic seawater zone for 56 d: (a) Al 2p, (b) O 1s
Fig.9  OCP of 5083-H111 Al alloy in a simulated dynamic seawater zone
Fig.10  Nyquist plots of 5083-H111 Al alloy tested in a simulated dynamic seawater zone
Fig.11  Equivalent circuit used for fitting EIS data
Time dCPEfRf103 Ω⸱cm2CPEdlRct104 Ω⸱cm2Rp104 Ω⸱cm2∑χ2
Qf / 10-6 Ω-1⸱cm-2⸱snfnfQdl / 10-6 Ω-1⸱cm-2⸱sndlndl
12.0610.8651.2834.4360.8977.3467.4742.705×10-2
1611.420.8940.72110.7310.9199.3989.4712.029×10-3
362.4360.9331.11610.6720.8559.6059.7172.866×10-2
561.9810.9870.4139.5700.8406.2166.2574.264×10-2
Table 1  EIS fitting parameters based on the electrochemical equivalent circuit
Fig.12  Schematic diagram of localized corrosion mechanism of 5083-H111 Al alloy in a simulated dynamic seawater zone
1 Huang Y C, Li Y, Xiao Z B, et al. Effect of homogenization on the corrosion behavior of 5083-H321 aluminum alloy [J]. J. Alloy. Compd., 2016, 673: 73
doi: 10.1016/j.jallcom.2016.02.228
2 Williams J C, Starke E A. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775
doi: 10.1016/j.actamat.2003.08.023
3 Jaume J, Marques M J F, Délia M L, et al. Surface modification of 5083 aluminum-magnesium induced by marine microorganisms [J]. Corros. Sci., 2022, 194: 109934
doi: 10.1016/j.corsci.2021.109934
4 Deng Y L, Zhang X M. Development of aluminium and aluminium alloy [J]. Chin. J. Nonferrous Met., 2019, 29: 2115
邓运来, 张新明. 铝及铝合金材料进展 [J]. 中国有色金属学报, 2019, 29: 2115
5 Li Y Q, Si W T, Gao R J. Preparation of superamphiphobic surface on al-alloy and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 966
李育桥, 司伟婷, 高荣杰. 铝合金超双疏表面的制备及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2022, 42: 966
doi: 10.11902/1005.4537.2021.339
6 Huang Y B, Zhou K K, Ba G Z, et al. The corrosion status of amphibious vehicles along the coast and integrated corrosion control technology [J]. Acta Armamentar., 2016, 37: 1291
黄燕滨, 周科可, 巴国召 等. 沿海两栖车辆腐蚀现状及腐蚀综合控制技术 [J]. 兵工学报, 2016, 37: 1291
doi: 10.3969/j.issn.1000-1093.2016.07.018
7 Grilli R, Baker M A, Castle J E, et al. Localized corrosion of a 2219 aluminium alloy exposed to a 3.5% NaCl solution [J]. Corros. Sci., 2010, 52: 2855
doi: 10.1016/j.corsci.2010.04.035
8 Li Z, Yi D Q, Tan C Y, et al. Investigation of the stress corrosion cracking behavior in annealed 5083 aluminum alloy sheets with different texture types [J]. J. Alloy. Compd., 2020, 817: 152690
doi: 10.1016/j.jallcom.2019.152690
9 Seong J, Frankel G S, Sridhar N. Inhibition of stress corrosion cracking of sensitized AA5083 [J]. Corrosion, 2016, 72: 284
10 Duan T G, Li Z, Peng W S, et al. Corrosion characteristics of 5A06 Al-alloy exposed in natural deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 352
段体岗, 李 祯, 彭文山 等. 深海环境5A06铝合金腐蚀行为与表面特性 [J]. 中国腐蚀与防护学报, 2023, 43: 352
doi: 10.11902/1005.4537.2022.102
11 Xia D H, Deng C M, Macdonald D, et al. Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review [J]. J. Mater. Sci. Technol., 2022, 112: 151
doi: 10.1016/j.jmst.2021.11.004
12 Xia D H, Deng C M, Chen Z G, et al. Modeling localized corrosion propagation of metallic materials by peridynamics: progresses and challenges [J]. Acta Metall. Sin., 2022, 58: 1093
doi: 10.11900/0412.1961.2022.00249
夏大海, 邓成满, 陈子光 等. 金属材料局部腐蚀损伤过程的近场动力学模拟: 进展与挑战 [J]. 金属学报, 2022, 58: 1093
doi: 10.11900/0412.1961.2022.00249
13 Mao Y C, Zhu Y, Sun S K, et al. Localized corrosion of 5083 Al-alloy in simulated marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 47
毛英畅, 祝 钰, 孙圣凯 等. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 47
doi: 10.11902/1005.4537.2022.162
14 Hou B R. Anti-corrosion technology to steel structure in splash zone [J]. Mater. China, 2014, 33: 26
侯保荣. 海洋钢结构浪花飞溅区腐蚀防护技术 [J]. 中国材料进展, 2014, 33: 26
15 Li H, Liu Y H, Zhao L H, et al. Corrosion behavior of 300M ultra high strength steel in simulated marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 87
李 晗, 刘元海, 赵连红 等. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 87
16 Peng C, Cao G W, Gu T Z, et al. The corrosion behavior of the 6061 Al alloy in simulated Nansha marine atmosphere [J]. J. Mater. Res. Technol., 2022, 19: 709
doi: 10.1016/j.jmrt.2022.05.066
17 Yasakau K A, Zheludkevich M L, Ferreira M G S. Role of intermetallics in corrosion of aluminum alloys. Smart corrosion protection [A]. Mitra R. Intermetallic Matrix Composites [M]. Boca Raton: Woodhead Publishing, 2018: 425
18 Zhao H Y, Gao D L, Zhang T, et al. Microstructure and corrosion evolution of aerospace AA2024 Al-Alloy thin wall structure produced through WAAM [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 621
赵海洋, 高多龙, 张 童 等. 电弧增材制造航空AA2024铝合金的微观结构及其腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 621
doi: 10.11902/1005.4537.2021.149
19 Zheng Q J, Wu J, Jiang H X, et al. Effect of micro-alloying element La on corrosion behavior of Al-Mg-Si alloys [J]. Corros. Sci., 2021, 179: 109113
doi: 10.1016/j.corsci.2020.109113
20 Mao Y C, Zhu Y, Deng C M, et al. Analysis of localized corrosion mechanism of 2024 aluminum alloy at a simulated marine splash zone [J]. Eng. Fail. Anal., 2022, 142: 106759
doi: 10.1016/j.engfailanal.2022.106759
21 Liang M X, Melchers R, Chaves I. Corrosion and pitting of 6060 series aluminium after 2 years exposure in seawater splash, tidal and immersion zones [J]. Corros. Sci., 2018, 140: 286
doi: 10.1016/j.corsci.2018.05.036
22 Huang G Q. Corrosion of aluminium alloys in marine environment (III)-A summary of 16 years exposure testing in splash zone [J]. Corros. Prot., 2003, 24: 47
黄桂桥. 铝合金在海洋环境中的腐蚀研究(III)—海水飞溅区16年暴露试验总结 [J]. 腐蚀与防护, 2003, 24: 47
23 Xia D H, Ji Y Y, Mao Y C, et al. Localized corrosion mechanism of 2024 aluminum alloy in a simulated dynamic seawater/air interface [J]. Acta Metall. Sin., 2023, 59: 297
doi: 10.11900/0412.1961.2022.00196
夏大海, 计元元, 毛英畅 等. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制 [J]. 金属学报, 2023, 59: 297
doi: 10.11900/0412.1961.2022.00196
24 Xia D H, Ji Y Y, Zhang R F, et al. On the localized corrosion of AA5083 in a simulated dynamic seawater/air interface—Part 1: Corrosion initiation mechanism [J]. Corros. Sci., 2023, 213: 110985
doi: 10.1016/j.corsci.2023.110985
25 Ji Y Y, Mao Y C, Dang L H, et al. A high-resolution characterisation of localised corrosion of AA5083-H111 in simulated seawater by TEM [J]. Corros. Eng. Sci. Technol., 2023, 58: 223
doi: 10.1080/1478422X.2022.2162662
26 Xia D H, Mao Y C, Zhu Y, et al. A novel approach used to study the corrosion susceptibility of metallic materials at a dynamic seawater/air interface [J]. Corros. Commun., 2022, 6: 62
doi: 10.1016/j.corcom.2022.03.001
27 Qin J, Li Z, Ma M Y, et al. Diversity of intergranular corrosion and stress corrosion cracking for 5083 Al alloy with different grain sizes [J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 765
doi: 10.1016/S1003-6326(22)65831-X
28 Yasakau K A, Zheludkevich M L, Lamaka S V, et al. Role of intermetallic phases in localized corrosion of AA5083 [J]. Electrochim. Acta, 2007, 52: 7651
doi: 10.1016/j.electacta.2006.12.072
29 Yi G S, Sun B H, Poplawsky J D, et al. Investigation of pre-existing particles in Al 5083 alloys [J]. J. Alloy. Compd., 2018, 740: 461
doi: 10.1016/j.jallcom.2017.12.329
30 Tan L, Allen T R. Effect of thermomechanical treatment on the corrosion of AA5083 [J]. Corros. Sci., 2010, 52: 548
doi: 10.1016/j.corsci.2009.10.013
31 Li N, Dong C F, Man C, et al. Insight into the localized strain effect on micro-galvanic corrosion behavior in AA7075-T6 aluminum alloy [J]. Corros. Sci., 2021, 180: 109174
doi: 10.1016/j.corsci.2020.109174
32 Wang B, Zhang L W, Su Y, et al. Investigation on the corrosion behavior of aluminum alloys 3A21 and 7A09 in chloride aqueous solution [J]. Mater. Des., 2013, 50: 15
doi: 10.1016/j.matdes.2013.02.080
33 Fu Y, Dai C D, Luo H, et al. The corrosion behavior and film properties of Al-containing high-entropy alloys in acidic solutions [J]. Appl. Surf. Sci., 2021, 560: 149854
doi: 10.1016/j.apsusc.2021.149854
34 Xia D H, Pan C C, Qin Z B, et al. Covalent surface modification of LY12 aluminum alloy surface by self-assembly dodecyl phosphate film towards corrosion protection [J]. Prog. Org. Coat., 2020, 143: 105638
35 Deng C M, Zhu Y, Sun S K, et al. Analysis of failure causes of epoxy-phenolic coated tinplate after boiling sterilization [J]. Eng. Fail. Anal., 2022, 135: 106129
doi: 10.1016/j.engfailanal.2022.106129
36 Paszternák A, Felhősi I, Pászti Z, et al. Surface analytical characterization of passive iron surface modified by alkyl-phosphonic acid layers [J]. Electrochim. Acta, 2010, 55: 804
doi: 10.1016/j.electacta.2009.09.023
37 Wang W, Mohammadi F, Alfantazi A. Corrosion behaviour of niobium in phosphate buffered saline solutions with different concentrations of bovine serum albumin [J]. Corros. Sci., 2012, 57: 11
doi: 10.1016/j.corsci.2011.12.039
38 Peng C, Cao G W, Gu T Z, et al. The effect of dry/wet ratios on the corrosion process of the 6061 Al alloy in simulated Nansha marine atmosphere [J]. Corros. Sci., 2023, 210: 110840
doi: 10.1016/j.corsci.2022.110840
39 Wan Y, Li L J, Jin Y N, et al. Pitting corrosion behavior and mechanism of 5083 aluminum alloy based on dry-wet cycle exposure [J]. Mater. Corros., 2023, 74: 608
[1] LI Qiang, LU Cheng, TANG Yinghao, TANG Jianfeng, LIU Bingcheng. Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[2] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[3] LIU Ming, WANG Jie, ZHU Chunhui, ZHANG Yanxiao. Electrochemical Corrosion Behavior of 3D-printed NiTi Shape Memory Alloy in a Simulated Oral Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[4] WANG Tong, WANG Wei. Distribution of Relaxation Time of Polydimethylsiloxane Coatings During Self-healing Process[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[5] HUANG Jiahe, YUAN Xi, CHEN Wen, YAN Wenjing, JIN Zhengyu, LIU Haixian, LIU Hongfang, LIU Hongwei. Effect of Temperature on Corrosion Behavior of Pipeline Steels N80 and TP125V in Artificial CO2-saturated Fracturing Fluid of Shale Gas[J]. 中国腐蚀与防护学报, 2023, 43(2): 251-260.
[6] YUAN Shicheng, WU Yanfeng, XU Changhui, WANG Xingqi, LENG Zhe, YANG Yange. Influence of Polyhydroxy Hyperdispersant on Anti-corrosion Property of Waterborne Epoxy Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[7] MAO Yingchang, ZHU Yu, SUN Shengkai, QIN Zhenbo, XIA Da-Hai, HU Wenbin. Localized Corrosion of 5083 Al-alloy in Simulated Marine Splash Zone[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[8] ZHAO Haiyang, GAO Duolong, ZHANG Tong, LV You, ZHANG Yupeng, ZHANG Xinxin, SHI Xin, WEI Xiaojing, LIU Dongmei, DONG Zehua. Microstructure and Corrosion Evolution of Aerospace AA2024 Al-Alloy Thin Wall Structure Produced Through WAAM[J]. 中国腐蚀与防护学报, 2022, 42(4): 621-628.
[9] WANG Qixuan, LYU Wensheng, YANG Peng, ZHU Liyi, LIAO Wenjing, ZHU Yuanle. Corrosion of Stainless Steel Shell of Embedded Sensor in Tailings Pond[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[10] LIANG Taihe, ZHU Xuemei, ZHANG Zhenwei, WANG Xinjian, ZHANG Yansheng. Corrosion Performance of Transition Layer at Interface of Oxide Scale/substrate Formed on Austenitic Steel Fe32Mn7Cr3Al2Si During High Temperature Oxidation[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
[11] CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[12] CAO Jingyi, FANG Zhigang, LI Liang, FENG Yafei, WANG Xingqi, SHOU Haiming, YANG Yange, CHU Guangzhe, YIN Wenchang. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[13] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[14] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[15] JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
No Suggested Reading articles found!