Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (3): 639-646    DOI: 10.11902/1005.4537.2022.148
Current Issue | Archive | Adv Search |
Effect of a New Heat Treatment Process on B Elements Distribution, Second Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel
LIANG Chaoxiong, LIANG Xiaohong(), HAN Peide
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Download:  HTML  PDF(21196KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Suppression of secondary phase precipitation is crucial for the improvement of hot-working character and corrosion resistance of super austenitic stainless steels (SASS). In this paper, a composite heat treatment process of dynamic solid solution treatment followed by low temperature aging was named the new heat treatment process, through which the alloying elements such as B distribution of steels can be adjusted. Hence, the effect of the new heat treatment process on the second phase precipitation and corrosion resistance of S31254 SASS was studied by means of SEM and EDS as well as CS350 electrochemical workstation. The results show that the new heat treatment process can suppress the formation of the second phase precipitation and change the distribution of alloying elements of the steel. The content of Mo in the precipitates of the sample steels 0B and 40B after treated by the new heat treatment process was much higher than those treated by the conventional solution treatment, which can result in the reduction of the total amount of precipitates and the improvement of the hot workability of the steel. The intergranular corrosion susceptibility of the sample steels treated by the new heat treatment process was evaluated by double ring potentiodynamic activation test (DL-EPR), which confirmed that the new heat treatment process can further improve the intergranular corrosion resistance of the sample steel 40B containing 0.004%B.

Key words:  super austenitic stainless steel      new heat treatment process      boron element distribution      precipitation      intergranular corrosion     
Received:  12 May 2022      32134.14.1005.4537.2022.148
ZTFLH:  TG156.2  
Fund: National Natural Science Foundation of China(51871159)
Corresponding Authors:  LIANG Xiaohong, E-mail: xhliang1983@163.com

Cite this article: 

LIANG Chaoxiong, LIANG Xiaohong, HAN Peide. Effect of a New Heat Treatment Process on B Elements Distribution, Second Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 639-646.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.148     OR     https://www.jcscp.org/EN/Y2023/V43/I3/639

SteelCSiMnPSCrNiMoCuNBFe
0B0.0100.610.430.0240.00120.1818.006.000.690.193-Bal.
40B0.0140.620.940.0140.00320.1518.116.120.720.200.004Bal.
Table 1  Chemical compositions of 0B and 40B steels (mass fraction / %)
Fig.1  Solubility curves of 0.004%B and 6%Mo in S31254 SASS (a) and flow diagram of new heat treatment process (b)
Fig.2  SEM images of 0B (a) and 40B (b) steels after conventional heat treatment, and 40B (c) steel after modified heat treatment
Fig.3  SEM images of 0B (a-c), 40B (d-f) and 40B-SS (g-i) samples aged at 950 ℃ for 0.5 h (a, d, g), 2 h (b, e, h) and 6 h (e, f, i)
Fig.4  Distributions of Fe, Cr, Ni, Mo, C and B around the grain boundary regions in 0B (a), 40B (b) and 40B-SS (c) samples aged at 950 ℃ for 6 h
Fig.5  Proportions of Mo in the precipitates of 0B, 40B and 40B-SS samples
Fig.6  DL-EPR (a) and DOS (b) curves of 0B, 40B and 40B-SS samples aged at 950 ℃ for 6h
Fig.7  Intergranular corrosion morphologies of 0B (a, d), 40B (b, e) and 40B-SS (c, f) samples aged at 950 ℃ for 6 h after DL-EPR test
1 Zhang S C, Li H B, Jiang Z H, et al. Chloride- and sulphate-induced hot corrosion mechanism of super austenitic stainless steel S31254 under dry gas environment [J]. Corros. Sci., 2020, 163: 108295
doi: 10.1016/j.corsci.2019.108295
2 Yi P, Hou L F, Du H Y, et al. NaCl induced corrosion of three austenitic stainless steels at high temperature [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 288
伊 璞, 侯利锋, 杜华云 等. 新型奥氏体不锈钢高温NaCl腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 288
3 Marin R, Combeau H, Zollinger J, et al. σ-phase formation in super austenitic stainless steel during directional solidification and subsequent phase transformations [J]. Metall. Mater. Trans., 2020, 51A: 3526
4 Liu G W, Ying H, Shi Z Q, et al. Hot deformation and optimization of process parameters of an as-cast 6Mo superaustenitic stainless steel: a study with processing map [J]. Mater. Des., 2014, 53: 662
doi: 10.1016/j.matdes.2013.07.065
5 Koutsoukis T, Redjaïmia A, Fourlaris G. Phase transformations and mechanical properties in heat treated superaustenitic stainless steels [J]. Mater. Sci. Eng., 2013, 561A: 477
6 Hao Y S, Cao G M, Li C G, et al. The aging precipitation behavior of 20Cr-24Ni-6Mo super-austenitic stainless steel processed by conventional casting and twin-roll strip casting [J]. Mater. Charact., 2019, 147: 21
doi: 10.1016/j.matchar.2018.10.015
7 Zhang S C, Li H B, Jiang Z H, et al. Effects of Cr and Mo on precipitation behavior and associated intergranular corrosion susceptibility of superaustenitic stainless steel S32654 [J]. Mater. Charact., 2019, 152: 141
doi: 10.1016/j.matchar.2019.04.010
8 Heino S. Role of Mo and W during sensitization of superaustenitic stainless steel—crystallography and composition of precipitates [J]. Metall. Mater. Trans., 2000, 31A: 1893
9 Liao L H, Li J Y, Zhao Z X, et al. Precipitation and phase transformation behavior during high-temperature aging of a cobalt modified Fe-24Cr-(22-x)Ni-7Mo-xCo superaustenitic stainless steel [J]. J. Mater. Sci., 2022, 57: 4771
doi: 10.1007/s10853-021-06740-1
10 Wang Q, Wang L J, Sun Y H, et al. The influence of Ce micro-alloying on the precipitation of intermetallic sigma phase during solidification of super-austenitic stainless steels [J]. J. Alloy. Compd., 2020, 815: 152418
doi: 10.1016/j.jallcom.2019.152418
11 Sharma M, Ortlepp I, Bleck W. Boron in heat‐treatable steels: a review [J]. Steel Res. Int., 2019, 90: 1900133
doi: 10.1002/srin.v90.11
12 Hu B, Trotter G, Wang Z W, et al. Effect of boron and carbon addition on microstructure and mechanical properties of the aged gamma-prime strengthened alumina-forming austenitic alloys [J]. Intermetallics, 2017, 90: 36
doi: 10.1016/j.intermet.2017.06.011
13 Jeong E H, Park S G, Kim S H, et al. Evaluation of the effect of B and N on the microstructure of 9Cr-2W steel during an aging treatment for SFR fuel cladding tubes [J]. J. Nucl. Mater., 2015, 467: 527
doi: 10.1016/j.jnucmat.2015.09.026
14 Wang J, Cui Y S, Bai J G, et al. The Mechanism on the B addition to regulate phase precipitation and improve intergranular corrosion resistance in UNS S31254 superaustenitic stainless steels [J]. J. Electrochem. Soc., 2019, 166: C600
doi: 10.1149/2.1361915jes
15 Bai J G, Cui Y S, Wang J, et al. Effect of compression deformation on precipitation phase behavior of B-containing S31254 super austenitic stainless steel [J]. J. Iron Steel Res. Int., 2019, 26: 712
doi: 10.1007/s42243-018-0194-0
16 Yu J T, Zhang S C, Li H B, et al. Influence mechanism of boron segregation on the microstructure evolution and hot ductility of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 112: 184
doi: 10.1016/j.jmst.2021.11.005
17 Kurban M, Erb U, Aust K T. A grain boundary characterization study of boron segregation and carbide precipitation in alloy 304 austenitic stainless steel [J]. Scr. Mater., 2006, 54: 1053
doi: 10.1016/j.scriptamat.2005.11.055
18 Zhang Y Q, Gu J F, Han L Z. Elemental redistribution and precipitation reactions of 9Cr1.5Mo1CoB(FB2) steel during tempering [J]. Mater. Charact., 2021, 171: 110778
doi: 10.1016/j.matchar.2020.110778
19 Mandal S, Kishore V, Bose M, et al. In vitro and in vivo degradability, biocompatibility and antimicrobial characteristics of Cu added iron-manganese alloy [J]. J. Mater. Sci. Technol., 2021, 84: 159
doi: 10.1016/j.jmst.2020.12.029
20 Han J, Zhu Z X, Wei G, et al. Microstructure and mechanical properties of Nb- and Nb+ Ti-Stabilised 18CrMo Ferritic stainless steels [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 716
doi: 10.1007/s40195-019-00988-y
21 Jin W S, Lang Y P, Rong F, et al. Research of EPR on the susceptibility to intergranular attack of austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 54
金维松, 郎宇平, 荣 凡 等. EPR法评价奥氏体不锈钢晶间腐蚀敏感性的研究 [J]. 中国腐蚀与防护学报, 2007, 27: 54
22 Li H, Xia S, Liu W Q, et al. Atomic scale study of grain boundary segregation before carbide nucleation in Ni-Cr-Fe Alloys [J]. J. Nucl. Mater., 2013, 439: 57
doi: 10.1016/j.jnucmat.2013.03.067
23 Blavette D, Duval P, Letellier L, et al. Atomic-scale APFIM and TEM investigation of grain boundary microchemistry in Astroloy nickel base superalloys [J]. Acta Mater., 1996, 44: 4995
doi: 10.1016/S1359-6454(96)00087-0
24 Cadel E, Lemarchand D, Chambreland S, et al. Atom probe tomography investigation of the microstructure of superalloys N18 [J]. Acta Mater., 2002, 50: 957
doi: 10.1016/S1359-6454(01)00395-0
25 Hu C L, Xia S, Li H, et al. Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control [J]. Corros. Sci., 2011, 53: 1880
doi: 10.1016/j.corsci.2011.02.005
[1] SHANG Qiang, MAN Cheng, PANG Kun, CUI Zhongyu, DONG Chaofang, CUI Hongzhi. Mechanism of Post-heat Treatment on Intergranular Corrosion Behavior of SLM-316L Stainless Steel with Different Carbon Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[2] HE Zhihao, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, HOU Lifeng, WEI Yinghui. Passivation Behavior of Super Austenitic Stainless Steels in Simulated Flue Gas Desulfurization Condensate[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[3] CHEN Tingting, WU Xiaolei, HAN Peide. Gradient Nanotwin Structure Prepared by SMAT Technology on S31254 Super Austenitic Stainless Steel Surface and Its Corrosion Behavior in 10%NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.
[4] BAO Yefeng, WU Zhuyu, CHEN Zhe, GUO Linpo, WANG Zirui, CAO Chong, SONG Qining. Effect of Sensitization Treatment on Electrochemical Corrosion and Pitting Corrosion of 00Cr21NiMn5Mo2N Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(6): 1027-1033.
[5] WANG Yingjun, LIU Honglei, WANG Guojun, DONG Kaihui, SONG Yingwei, NI Dingrui. Investigation of Anodic Film on a Novel RE-containing Al-Alloy Al-Zn-Mg-Cu-Sc[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[6] Hui LIU,Wei QIU,Bin LENG,Guojun YU. Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[7] Xiwu LIU,Xiaoyan ZHAO,Xin'an CUI,Lanfei XU,Xiaowei LI,Rongqi CHENG. Corrosion Behavior of 304L Stainless Steel in Nitric Acid-Sodium Nitrate Solutions[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[8] Xiaoyan ZHAO, Xiwu LIU, Xin'an CUI, Fengchang YU. Corrosion Behavior of 304L Steel in Nitric Acid Environment[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[9] Jiale HE, Julin WANG. Impacts of Initial pH and Cl- Concentration on Nantokite Hydrolysis[J]. 中国腐蚀与防护学报, 2018, 38(4): 397-402.
[10] Danyang LIU, Jiexia WANG, Jinfeng LI, Yonglai CHEN, Xuhu ZHANG, Xiuzhi XU, Ziqiao ZHENG. Intergranular Corrosion Behavior of T6 Aging Treated Micro-alloyed Al-Cu-Li Alloys with Mg/Ag/Zn[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.
[11] Deqiang LIU,Liming KE,Weiping XU,Li XING,Yuqing MAO. Intergranular Corrosion Behavior of Friction-stir Welding Joint for 20 mm Thick Plate of 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[12] Xinyuan PENG,Xianliang ZHOU,Xiaozhen HUA. Effect of Grain Size on Susceptibility to Intergranular Corrosion of 316LN Stainless Steel[J]. 中国腐蚀与防护学报, 2016, 36(1): 25-30.
[13] XU Long, YAO Xi, LI Jingfeng, CAI Chao. Correlation Between Intergranular Corrosion Behavior and Aging Treatment of 2099 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2014, 34(5): 419-425.
[14] HUA Xiaozhen, HUANG Jinhua, NIE Lun, ZHOU Xianliang, PENG Xinyuan. Effect of Aging Temperature on Microstructure and Corrosion Behavior of 15-5PH Precipitation Hardened Stainless Steel[J]. 中国腐蚀与防护学报, 2014, 34(2): 131-137.
[15] YU Shurong,HE Yanni,LI Shuxin,WANG Lu. Effect of Grain Size on Susceptibility to Intergranular Corrosion for Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2013, 33(1): 70-74.
No Suggested Reading articles found!