Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (3): 630-638    DOI: 10.11902/1005.4537.2022.217
Current Issue | Archive | Adv Search |
Electrochemical Properties and Offshore Corrosion Behavior of SAF 2304 Duplex Stainless Steel
HUANG Jiazhen1,2, HUANG Tao2, YANG Lijing2(), JI Dengping3, DING He3, WEI Yi1, SONG Zhenlun2
1.College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310000, China
2.Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
3.Zhejiang Qingshan Iron & Steel Co. Ltd., Lishui 323903, China
Download:  HTML  PDF(20332KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Electrochemical properties and real-sea corrosion behavior of duplex stainless steel SAF 2304 in a test site located in the Zhoushan area of the East China Sea, with a depth of about 10 m were assessed by mean of mass loss measurement, electrochemical tests, optical microscopy (OM) and scanning electron microscopy (SEM) and compared with carbon steel. The electrochemical test results show that the free corrosion potential of carbon steel is -0.857 VSCE, the passive current density is 87.30 μA‧cm-2, the capacitive arc radius is small, and the corrosion resistance is poor. SAF 2304 duplex stainless steel is stable for a long time in the open circuit potential of 3.5%NaCl solution, the free corrosion potential is -0.369 VSCE, the passive current density is 18.03 μA‧cm-2, the capacity of the arc resistance is large, and the corrosion resistance is good. In the real sea exposure experiment, the corrosion rate of SAF 2304 duplex stainless steel is much smaller than that of carbon steel. With the increase of exposure time, a relatively compact scale composed of Ca and Mg containing deposits and SiO2 may further form on the pre-formed metal oxide film, and all the corrosion products are tightly adhered to the substrate, therefore, provides protective effect to a certain extent for the steel, and the corrosion morphology is uniformly corroded.

Key words:  duplex stainless steel      electrochemistry      real sea      corrosion behavior     
Received:  01 July 2022      32134.14.1005.4537.2022.217
ZTFLH:  TG27  
Fund: Zhejiang Science and Technology Plan Project(2022C01192);Zhejiang Science and Technology Plan Project(2021C01082)
Corresponding Authors:  YANG Lijing, E-mail: yanglj@nimte.ac.cn

Cite this article: 

HUANG Jiazhen, HUANG Tao, YANG Lijing, JI Dengping, DING He, WEI Yi, SONG Zhenlun. Electrochemical Properties and Offshore Corrosion Behavior of SAF 2304 Duplex Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 630-638.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.217     OR     https://www.jcscp.org/EN/Y2023/V43/I3/630

Fig.1  XRD patterns of SAF 2304 duplex stainless steel
Fig.2  Metallographs of cross-section (a) and longitudinal section (b) and SEM images of cross-section (c) and longitudinal section (d) of SAF 2304 duplex stainless steel
Fig.3  Open circuit potential of SAF 2304 duplex stainless steel in 3.5%NaCl solution
Fig.4  Polarization curves (a) and EIS results (b) of carbon steel and SAF 2304 duplex stainless steel in 3.5%NaCl solution
Fig.5  Mass loss rate (a) and mass gain rate (b) of carbon steel and SAF 2304 duplex stainless steel after immersion in Zhoushan offshore
Fig.6  Corrosion morphologies of carbon steel after immersion in Zhoushan offshore with 30 d (a), 90 d (b), 180 d (c) and 360 d (d) exposure time
Fig.7  Corrosion morphologies of SAF 2304 duplex stainless steel after immersion in Zhoushan offshore with 30 d (a), 90 d (b), 180 d (c) and 360 d (d) exposure time
PositionCOFeSiNaClAlMgCaKISCrTi
A11.5165.272.534.400.400.211.452.7210.880.340.30---
B33.5249.172.846.260.19-2.871.252.890.77--0.130.11
C6.4866.7721.311.021.010.900.310.600.250.51
D46.0327.3414.463.96--2.350.45-1.08-4.33--
Table 1  EDS elemental composition analysis of corresponding position surfaces in Fig.6 (atomic fraction / %)
PositionCOFeSiNaAlMgCaKIClCrSnSb
A8.0364.731.5714.470.415.732.091.571.40----
B16.6459.630.604.82-1.901.5411.181.070.46-0.571.58
C32.5955.61--0.400.21-10.97-----
D-60.3719.076.66-4.193.412.690.77-2.080.76--
Table 2  EDS elemental composition analysis of corresponding position surfaces in Fig.7 (atomic fraction / %)
Fig.8  Cross-section morphologies and EDS of corrosion morphologies formed on carbon steel (a) and SAF 2304 duplex stainless steel (b) after immersion in Zhoushan offshore for 12 months
Fig.9  Surface morphologies of carbon steel after removing corrosion products after immersion in Zhoushan offshore with 30 d (a), 90 d (b), 180 d (c) and 360 d (d) exposure time
Fig.10  Surface morphologies of SAF 2304 duplex stainless steel after removing corrosion products after immersion in Zhoushan offshore with 30 d (a), 90 d (b), 180 d (c) and 360 d (d) exposure time
Fig.11  X-ray diffraction patterns of corrosion products of carbon steel and SAF 2304 duplex stainless steel after immersion for 12 months
Fig.12  FTIR spectra of corrosion products of carbon steel and SAF 2304 duplex stainless steel after immersion for 12 months
1 Nilsson J O. Super duplex stainless steels [J]. Mater. Sci. Technol., 1992, 8: 685
doi: 10.1179/mst.1992.8.8.685
2 Patra S, Agrawal A, Mandal A, et al. Characteristics and manufacturability of duplex stainless steel: A review [J]. Trans. Indian Inst. Met., 2021, 74: 1089
doi: 10.1007/s12666-021-02278-7
3 Francis R, Byrne G. Duplex stainless steels—Alloys for the 21st century [J]. Metals, 2021, 11: 836
doi: 10.3390/met11050836
4 Burkert A, Lehmann J, Burkert A, et al. Technical and economical stainless steel alternatives for civil engineering applications [J]. Mater. Corros., 2014, 65: 1080
5 Burkert A, Müller T, Lehmann J, et al. Long-term corrosion behaviour of stainless steels in marine atmosphere [J]. Mater. Corros., 2018, 69: 20
6 Hussain E, Husain A. Erosion—corrosion of duplex stainless steel under Kuwait marine condition [J]. Desalination, 2005, 183: 227
doi: 10.1016/j.desal.2005.02.051
7 Aribo S, Barker R, Hu X M, et al. Erosion-corrosion behaviour of lean duplex stainless steels in 3.5% NaCl solution [J]. Wear, 2013, 302: 1602
doi: 10.1016/j.wear.2012.12.007
8 Lin Z H, Ming N X, He C, et al. Effect of hydrostatic pressure on corrosion behavior of X70 steel in simulated sea water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 307
林朝晖, 明南希, 何 川 等. 静水压力对X70钢在海洋环境中腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 307
doi: 10.11902/1005.4537.2020.061
9 Chen J, Huang Y L, Hou B R. Research progress of corrosion protection of carbon steel in spray zone [J]. Corros. Sci. Prot. Technol., 2012, 24: 342
陈 君, 黄彦良, 侯保荣. 低碳钢在浪花飞溅区的腐蚀防护研究进展 [J]. 腐蚀科学与防护技术, 2012, 24: 342
10 Haugan E B, Næss M, Rodriguez C T, et al. Effect of Tungsten on the pitting and crevice corrosion resistance of type 25Cr super duplex stainless steels [J]. Corrosion, 2017, 73: 53
doi: 10.5006/2185
11 Lv S L, Yang Z M, Zhang B, et al. Corrosion and passive behaviour of duplex stainless steel 2205 at different cooling rates in a simulated marine-environment solution [J]. J. Iron Steel Res. Int., 2018, 25: 943
doi: 10.1007/s42243-018-0136-x
12 Zhu M, Zhang Q, Yuan Y F, et al. Study on the correlation between passive film and AC corrosion behavior of 2507 super duplex stainless steel in simulated marine environment [J]. J. Electroanal. Chem., 2020, 864: 114072
doi: 10.1016/j.jelechem.2020.114072
13 Zhu M, He F, Yuan Y F, et al. Effect of aging time on the microstructure and corrosion behavior of 2507 super duplex stainless steel in simulated marine environment [J]. J. Mater. Eng. Perform., 2021, 30: 5652
doi: 10.1007/s11665-021-05812-2
14 Tran T T T, Kannoorpatti K, Padovan A, et al. Effect of pH regulation by sulfate-reducing bacteria on corrosion behaviour of duplex stainless steel 2205 in acidic artificial seawater [J]. Roy. Soc. Open Sci., 2021, 8: 200639
15 Li P. Research on initial corrosion behavior of X60 pipeline steel in simulated tidal zone [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 338
李 平. X60管线钢在模拟潮差区初期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 338
16 Hartt W H. 2012 Frank newman speller award: cathodic protection of offshore structures—history and current status [J]. Corrosion, 2012, 68: 1063
doi: 10.5006/0010-9312-68.12.1063
17 Min Z Q, Ou J C, Liang C W, et al. Research on the corrosion behavior of cast duplex stainless steel in seawater environment [J]. Foundry, 2015, 64: 785
闵正清, 欧家才, 梁承伟 等. 海水环境中铸造双相不锈钢的腐蚀行为研究 [J]. 铸造, 2015, 64: 785
18 Sun Y, Wu J J, Zhang D, et al. Investigation of microorganisms in corrosion product scales on Q235 carbon steel exposed to tidal-and full immersion zone at Qindao-and Sanya-sea waters [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 333
孙 艳, 吴佳佳, 张 盾 等. 不同海域、不同腐蚀区带Q235碳钢实海挂片腐蚀产物层内微生物调查 [J]. 中国腐蚀与防护学报, 2018, 38: 333
19 Li Z Y, Wang G, Luo S W, et al. Early corrosion behavior of EH36 ship plate steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 463
李子运, 王 贵, 罗思维 等. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 463
doi: 10.11902/1005.4537.2019.203
20 Zhu J Y, Li D P, Chang W, et al. In situ marine exposure study on corrosion behaviors of five alloys in coastal waters of western Pacific Ocean [J]. J. Mater. Res. Technol., 2020, 9: 8104
doi: 10.1016/j.jmrt.2020.05.060
21 Zhu X R, Huang G Q, Lin L Y, et al. Long term corrosion characteristics of metallic materials in marine environments [J]. Corros. Eng., Sci. Technol., 2008, 43: 328
22 Sieurin H, Westin E M, Liljas M, et al. Fracture toughness of welded commercial lean duplex stainless steels [J]. Weld. World, 2009, 53: R24
doi: 10.1007/BF03266700
23 Calderon-Uriszar-Aldaca I, Briz E, Garcia H, et al. The weldability of duplex stainless-steel in structural components to withstand corrosive marine environments [J]. Metals, 2020, 10: 1475
doi: 10.3390/met10111475
24 Jing Q, Fang X, Ni J X, et al. Use of 2304 stainless steel reinforcement in Hong Kong-Zhuhai-Macau bridge—corrosion behaviors of 2304 stainless steel reinforcement [J]. J. Highw. Transp. Res. Dev., 2017, 34(10): 51
景 强, 方 翔, 倪静姁 等. 2304不锈钢钢筋在港珠澳大桥的应用—钢筋耐蚀性能研究 [J]. 公路交通科技, 2017, 34(10): 51
25 Peng W S, Liu S T, Guo W M, et al. Corrosion behavior and regularities of two stainless steels in seawater environment of different harbors [J]. Equip. Environ. Eng., 2020, 17(7): 76
彭文山, 刘少通, 郭为民 等. 两种不锈钢在港口海水环境中的腐蚀行为和规律研究 [J]. 装备环境工程, 2020, 17(7): 76
26 Sitarz M, Handke M, Mozgawa W. Identification of silicooxygen rings in SiO2 based on IR spectra [J]. Spectrochim. Acta, 2000, 56A: 1819
27 Chen D M, Chen X Y, Chen S D, et al. Rust evolution and electrochemical properties of field-exposed carbon steel in a tropical marine environment [J]. Int. J. Electrochem. Sci., 2018, 13: 7505
28 Wu Y J, Sha S L, Dong Y, et al. Study on characteristics of two-dimensional diffuse reflectance infrared spectrum of silicon dioxide [J]. Silicone Mater., 2019, 33: 479
武玉洁, 沙淑莉, 董 妍 等. 二氧化硅二维漫反射红外光谱特征研究 [J]. 有机硅材料, 2019, 33: 479
29 Liu Y W, Wang Z Y, Wei Y H. Influence of seawater on the carbon steel initial corrosion behavior [J]. Int. J. Electrochem. Sci., 2019, 14: 1147
30 Zhang B, Xiao X, Han Y J, et al. Study on third-step infrared spectroscopy of calcium carbonate [J]. Inorg. Chem. Ind., 2021, 53(1): 97
张 彬, 肖 霄, 韩芸娇 等. 碳酸钙三级红外光谱研究 [J]. 无机盐工业, 2021, 53(1): 97
31 Zhao H X, Hou X H. Deposit in bleached pulp production system and its infrared spectrum identification [J]. China Pulp Pap. Ind., 2022, 43(12): 20
赵华雄, 侯小红. 制浆系统中出现的沉积物及其红外图谱简析 [J]. 中华纸业, 2022, 43(12): 20
[1] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[2] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[3] LIU Hao, GUO Xiaokai, WANG Wei, WU Liankui, CAO Fahe, SUN Qingqing. Effect of Ultrasonic Shot Peening on Microstructure and Properties of a 7075 Al-alloy Rod[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[4] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[5] PAN Dailong, SI Xiaodong, LV Jinhong. Effect of Flow Velocity on Flow Accelerated Corrosion Rate of Carbon Steel Elbow[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
[6] REN Huangwei, LIAO Bokai, CUI Linjing, XIANG Tengfei. Effect of Liquid Film Thickness on Corrosion Behavior of Solid Slippery Surface under Thin Liquid Film[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[7] PENG Wenshan, DUAN Tigang, MA Li, XIN Yonglei, CHENG Wenhua, LIU Shaotong. Corrosion Behavior of ZAlSi7Mg Al-alloy in Deep-sea Environments in Western Pacific Ocean and South China Sea[J]. 中国腐蚀与防护学报, 2023, 43(3): 516-524.
[8] XIA Xiaojian, WAN Xinyuan, CHEN Yunxiang, HAN Jiceng, CHEN Yiyang, YAN Kanghua, LIN Deyuan, CHEN Tianpeng, ZUO Xiaomei, SUN Baozhuang, CHENG Xuequn. Effect of Heat Treatments on Corrosion Behavior of 3Cr Low Carbon Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[9] WANG Honglun, YANG Hua, CAI Hui, LI Bowen. Corrosion Behavior of Q235 Steel by Outdoor Exposure and under Shelter in Atmosphere of Hainan Coastal[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[10] ZHANG Quanfu, SONG Lei, WANG Jian, GUO Zhenyu, REN Naidong, ZHAO Jianqi, WU Weikang, CHENG Weili. Mechanical Properties and Corrosion Behavior of an Extruded Dilute Mg-alloy Mg-0.5Bi-0.5Sn-0.5Ca[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[11] WAN Hongxia, LIU Chonglin, WANG Zian, LIU Ru, CHEN Changfeng. Corrosion Behavior of P110S Oil Casing Steel in Sulfur Containing Environment[J]. 中国腐蚀与防护学报, 2023, 43(2): 371-376.
[12] ZHAO Yi, CAO Jingyi, FANG Zhigang, FENG Yafei, HAN Zhuo, MENG Fandi, WANG Zhaodong, WANG Fuhui. Corrosion Behavior of A517Gr.Q Marine Steel in Simulated Corrosive Condition of Marine Splashing Zone[J]. 中国腐蚀与防护学报, 2022, 42(6): 921-928.
[13] BAO Yefeng, WU Zhuyu, CHEN Zhe, GUO Linpo, WANG Zirui, CAO Chong, SONG Qining. Effect of Sensitization Treatment on Electrochemical Corrosion and Pitting Corrosion of 00Cr21NiMn5Mo2N Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(6): 1027-1033.
[14] HUANG Lianpeng, ZHANG Xin, XIONG Yiming, TAO Jiahao, WANG Zehua, ZHOU Zehua. Corrosion Behavior of Al-3.0Mg-xRE/Fe Alloys Under Magnetic Field of Different Intensities[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[15] ZHAO Guoxian, WANG Yingchao, ZHANG Siqi, SONG Yang. Influence Mechanism of H2S/CO2-charging on Corrosion of J55 Steel in an Artificial Solution[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
No Suggested Reading articles found!