Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 885-893    DOI: 10.11902/1005.4537.2021.313
Current Issue | Archive | Adv Search |
Review of Hydrogen Embrittlement of Medium Manganese TRIP Steel
MA Cheng(), CUI Yanfa, ZHANG Qing, ZHAO Linlin, WANG Lihui, XIONG Ziliu
Technology and Research Institute, HBIS Group, Shijiazhuang 050000, China
Cite this article: 

MA Cheng, CUI Yanfa, ZHANG Qing, ZHAO Linlin, WANG Lihui, XIONG Ziliu. Review of Hydrogen Embrittlement of Medium Manganese TRIP Steel. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 885-893.

Download:  HTML  PDF(6897KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the increasing requirements for automobile light mass, the R&D of the third generation of high strength automobile steel has attracted extensive attention. The progress and current status for the research of medium-Mn steel are summarized, including the influence of composition design and processing technology on the mechanical properties. In the field of hydrogen induced cracking (HIC), the mechanism of HIC susceptibility affected by the microstructure of medium-Mn steel is described, with a focus on the effect of transformation induced plasticizing (TRIP) on the HIC susceptibility. The research hotspots such as the influence of second phase precipitation and microstructure defects on HIC, are also discussed. Finally, challenges on mechanical properties and HIC susceptibility of medium-Mn steel is pointed out, and further research perspectives such as the precise control of microstructure and the technology related with direct detection of hydrogen in steels were also briefly addressed.

Key words:  medium-Mn steel      high strength steel      hydrogen induced cracking (HIC)      transformation-induced plasticly (TRIP)     
Received:  03 November 2021     
ZTFLH:  TG174  
Fund: Natural Science Foundation of Hebei Province(E2019318022);Key Research Project of HBIS Group(HG2020102)
About author:  MA Cheng, E-mail: macheng01@hbisco.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.313     OR     https://www.jcscp.org/EN/Y2022/V42/I6/885

Fig.1  TEM images[30] (a-c) and structure diagrammatic sketches (d-f) of the tested steel under cold rolling (a), warm rolling (b) and hot rolling (c)
Fig.2  Schematic sketchs describing the microstructure-driven H distribution and the dominant role of the HELP mechanism on void nucleation in IA700 (a) and IA800 (b) steels[49]
Fig.3  Relation between the elongation loss and total dislocation density for Amrco iron[75]
[1] Lee Y K, Han J. Current opinion in medium manganese steel [J]. Mater. Sci. Technol., 2015, 31: 843
doi: 10.1179/1743284714Y.0000000722
[2] Niikura M, Morris J W. Thermal processing of ferritic 5Mn steel for toughness at cryogenic temperatures [J]. Metall. Trans., 1980, 11A: 1531
[3] De Moor E, Matlock D K, Speer J G, et al. Austenite stabilization through manganese enrichment [J]. Scr. Mater., 2011, 64: 185
doi: 10.1016/j.scriptamat.2010.09.040
[4] Lee S J, Lee S, De Cooman B C. Mn partitioning during the intercritical annealing of ultrafine-grained 6% Mn transformation-induced plasticity steel [J]. Scr. Mater., 2011, 64: 649
doi: 10.1016/j.scriptamat.2010.12.012
[5] Heo Y U, Suh D W, Lee H C. Fabrication of an ultrafine-grained structure by a compositional pinning technique [J]. Acta Mater., 2014, 77: 236
doi: 10.1016/j.actamat.2014.05.057
[6] Hu B, Luo H W, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review [J]. J. Mater. Sci. Technol., 2017, 33: 1457
doi: 10.1016/j.jmst.2017.06.017
[7] Li Y, Liu H W, Du Y H, et al. Applications and developments of AHSS in automobile industry [J]. Mater. Rev., 2011, 25(13): 101
(李扬, 刘汉武, 杜云慧 等. 汽车用先进高强钢的应用现状和发展方向 [J]. 材料导报, 2011, 25(13): 101)
[8] Huang F, Zhou Q J. Progress and perspectives of hydrogen induced delayed fracture of high strength steels [J]. Bao-Steel Technol., 2015, (3): 11
(黄发, 周庆军. 高强钢的氢致延迟断裂行为研究进展 [J]. 宝钢技术, 2015, (3): 11)
[9] Lynch S. Hydrogen embrittlement phenomena and mechanisms [J]. Corros. Rev., 2012, 30: 105
[10] Martin M L, Dadfarnia M, Nagao A, et al. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials [J]. Acta Mater., 2019, 165: 734
doi: 10.1016/j.actamat.2018.12.014
[11] Liu Q L, Zhou Q J, Venezuela J, et al. A review of the influence of hydrogen on the mechanical properties of DP, TRIP, and TWIP advanced high-strength steels for auto construction [J]. Corros. Rev., 2016, 34: 127
doi: 10.1515/corrrev-2015-0083
[12] Miller R L. Ultrafine-grained microstructures and mechanical properties of alloy steels [J]. Metall. Mater. Trans., 1972, 3B: 905
[13] Xu H F, Zhao J, Cao W Q, et al. Heat treatment effects on the microstructure and mechanical properties of a medium manganese steel (0.2C-5Mn) [J]. Mater. Sci. Eng., 2012, 532A: 435
[14] Dai Z B, Ding R, Yang Z G, et al. Elucidating the effect of Mn partitioning on interface migration and carbon partitioning during quenching and partitioning of the Fe-C-Mn-Si steels: modeling and experiments [J]. Acta Mater., 2018, 144: 666
doi: 10.1016/j.actamat.2017.11.025
[15] Chen H, van der Zwaag S. Analysis of ferrite growth retardation induced by local Mn enrichment in austenite created by prior interface passages [J]. Acta Mater., 2013, 61: 1338
doi: 10.1016/j.actamat.2012.11.011
[16] Sun B H, Fazeli F, Scott C, et al. Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions [J]. Mater. Sci. Eng., 2018, 729A: 496
[17] Xu J P, Fu H, Wang Z, et al. Research progress and prospect of medium manganese steel [J]. Chin. J. Eng., 2019, 41: 557
(徐娟萍, 付豪, 王正 等. 中锰钢的研究进展与前景 [J]. 工程科学学报, 2019, 41: 557)
[18] Tian Y Q, Li W, Song J Y, et al. Effect of C and Mn element partitioning behavior on microstructure and properties of cold-rolled medium manganese TRIP steel [J]. J. Iron Steel Res., 2019, 31: 312
(田亚强, 黎旺, 宋进英 等. C和Mn元素配分行为对冷轧中锰TRIP钢组织性能的影响 [J]. 钢铁研究学报, 2019, 31: 312)
[19] Du P J, Yang D P, Bai M K, et al. Austenite stabilisation by two step partitioning of manganese and carbon in a Mn-TRIP steel [J]. Mater. Sci. Technol., 2019, 35: 2084
doi: 10.1080/02670836.2019.1572316
[20] Li N, Shi J, Chen W L, et al. Effect of carbon content on microstructure and mechanical properties of cold-rolled medium manganese steel [J]. Hot Work. Technol., 2012, 41(2): 5
(李楠, 时捷, 陈为亮 等. 碳含量对冷轧中锰钢双相区退火组织和力学性能的影响 [J]. 热加工工艺, 2012, 41(2): 5)
[21] Seo C H, Kwon K H, Choi K, et al. Deformation behavior of ferrite-austenite duplex lightweight Fe-Mn-Al-C steel [J]. Scr. Mater., 2012, 66: 519
doi: 10.1016/j.scriptamat.2011.12.026
[22] Wang X H, Kang J, Li Y J, et al. Characterisation on Al-bearing hot-rolled TRIP steel produced through isothermal bainite transformation [J]. Mater. Sci. Technol., 2020, 36(2): 210
doi: 10.1080/02670836.2019.1695079
[23] Jang J M, Kim S J, Kang N H, et al. Effects of annealing conditions on microstructure and mechanical properties of low carbon, manganese transformation-induced plasticity steel [J]. Met. Mater. Int., 2009, 15: 909
doi: 10.1007/s12540-009-0909-7
[24] Sun B H, Fazeli F, Scott C, et al. The influence of silicon additions on the deformation behavior of austenite-ferrite duplex medium manganese steels [J]. Acta Mater., 2018, 148: 249
doi: 10.1016/j.actamat.2018.02.005
[25] Yu H C, Cai Z Z, Fu G Q, et al. Effect of V-Ti addition on microstructure evolution and mechanical properties of hot-rolled transformation-induced plasticity steel [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 352
doi: 10.1007/s40195-018-0796-3
[26] Lei M. Study of microstructure and mechanical properties of V-alloyed medium Mn steel [D]. Beijing: Beijing Jiaotong University, 2019
(雷鸣. 钒合金化中锰钢组织及力学性能研究 [D]. 北京: 北京交通大学, 2019)
[27] Zhu Y S, Hu B, Luo H W. Influence of Nb and V on microstructure and mechanical properties of hot-rolled medium Mn steels [J]. Steel Res. Int., 2018, 89: 1700389
doi: 10.1002/srin.201700389
[28] Natsumeda H, Kitahara A, Hashimoto S. Effect of cold reduction on microstructure and mechanical property of 5% Mn steel [J]. Tetsu-to-Hagane, 2018, 104: 274
doi: 10.2355/tetsutohagane.TETSU-2017-069
[29] Magalhães A S, Dos Santos C E, Ferreira A O V, et al. Analysis of medium manganese steel through cold-rolling and intercritical annealing or warm-rolling [J]. Mater. Sci. Technol., 2019, 35: 2120
doi: 10.1080/02670836.2018.1463613
[30] Zhao X L. Study of the susceptibility to hydrogen embrittlement of medium-Mn steel [D]. Beijing: Central Iron & Steel Research Institute, 2019
(赵晓丽. 高强塑积中锰钢氢脆敏感性的研究 [D]. 北京: 钢铁研究总院, 2019)
[31] Wang H S, Yuan G, Lan M F, et al. Microstructure and mechanical properties of a novel hot-rolled 4%Mn steel processed by intercritical annealing [J]. J. Mater. Sci., 2018, 53: 12570
doi: 10.1007/s10853-018-2512-0
[32] Han Y, Kuang S, Cao J L. Effect of continuous annealing time on microstructure and properties of warm rolled medium-Mn steel [J]. Automob. Technol. Mater., 2014, (10): 5
(韩赟, 邝霜, 曹佳丽. 连续退火时间对温轧中锰钢组织性能的影响 [J]. 汽车工艺与材料, 2014, (10): 5)
[33] Zhao X L, Zhang Y J, Shao C W, et al. Thermal stability of retained austenite and mechanical properties of medium-Mn steel during tempering treatment [J]. J. Iron Steel Res. Int., 2017, 24: 830
doi: 10.1016/S1006-706X(17)30123-1
[34] Li Z C, Misra R D K, Ding H, et al. The significant impact of pre-strain on the structure-mechanical properties relationship in cold-rolled medium manganese TRIP steel [J]. Mater. Sci. Eng., 2018, 712A: 206
[35] Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: a new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6(13): 1430
doi: 10.1126/sciadv.aay1430 pmid: 32258395
[36] Zhu X, Zhang K, Li W, et al. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels [J]. Mater. Sci. Eng., 2016, 658A: 400
[37] Wu K. The study of microstructure effect on resistance to hydrogen embrittlement and strength and plasticity in miedium-high carbon steel [D]. Shanghai: Shanghai Jiaotong University, 2017
(吴珂. 中高碳钢强塑性组织调控与氢脆相关性研究 [D]. 上海: 上海交通大学, 2017)
[38] Han J, Nam J H, Lee Y K. The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel [J]. Acta Mater., 2016, 113: 1
doi: 10.1016/j.actamat.2016.04.038
[39] Jeong I, Ryu K M, Lee D G, et al. Austenite morphology and resistance to hydrogen embrittlement in medium Mn transformation-induced plasticity steel [J]. Scr. Mater., 2019, 169: 52
doi: 10.1016/j.scriptamat.2019.05.011
[40] Zhao X L, Zhang Y J, Hui W J, et al. Hydrogen embrittlement susceptibility of 0.1C-5Mn medium-Mn steel under different treatment conditions [J]. J. Iron Steel Res., 2019, 31: 837
(赵晓丽, 张永健, 惠卫军 等. 不同处理状态下0.1C-5Mn中锰钢的氢脆敏感性 [J]. 钢铁研究学报, 2019, 31: 837)
[41] Du Y, Gao X H, Lan L Y, et al. Hydrogen embrittlement behavior of high strength low carbon medium manganese steel under different heat treatments [J]. Int. J. Hydrogen Energy, 2019, 44: 32292
doi: 10.1016/j.ijhydene.2019.10.103
[42] Shao C W. Study on microstructure control and hydrogen embrittlement susceptibility of Al-containing medium Mn steels with high product of strength to ductility [D]. Beijing: Beijing Jiaotong University, 2018
(邵成伟. 高强塑积含铝中锰钢组织调控及氢脆敏感性研究 [D]. 北京: 北京交通大学, 2018)
[43] Wang Z, Xu J P, Li J X. Effect of heat treatment processes on hydrogen embrittlement in hot-rolled medium Mn steels [J]. Int. J. Hydrogen Energy, 2020, 45: 20004
doi: 10.1016/j.ijhydene.2020.04.241
[44] Xu J P, Wang Z, Fu H, et al. Effects of rolling and heat treatment on hydrogen embrittlement in medium-Mn steel [J]. Mater. Lett., 2021, 305: 130784
doi: 10.1016/j.matlet.2021.130784
[45] Wang Z, Xu J, Li J. Influence of microstructure on hydrogen embrittlement in hot-rolled medium Mn steels [J]. Mater. Sci. Eng., 2020, 780A: 139147
[46] Turnbull A, Hutchings R B. Analysis of hydrogen atom transport in a two-phase alloy [J]. Mater. Sci. Eng., 1994, 177A: 161
[47] Perng T P, Altstetter C J. Comparison of hydrogen gas embrittlement of austenitic and ferritic stainless-steels [J]. Metall. Trans., 1987, 18A: 123
[48] Sun B H, Krieger W, Rohwerder M, et al. Dependence of hydrogen embrittlement mechanisms on microstructure-driven hydrogen distribution in medium Mn steels [J]. Acta Mater., 2020, 183: 313
doi: 10.1016/j.actamat.2019.11.029
[49] Luo H W, Liu J H, Dong H. A novel observation on cementite formed during intercritical annealing of medium Mn steel [J]. Metall. Mater. Trans., 2016, 47A: 3119
[50] He J H, Tang X Y, Chen N P. Hydrogen induced cracking in a Ferrite-Austenite duplex stainless steel [J]. Acta Metall. Sin., 1989, 25(1): 37
(何建宏, 唐祥云, 陈南平. 铁素体-奥氏体双相不锈钢的氢致开裂研究 [J]. 金属学报, 1989, 25(1): 37)
[51] Örnek C, Reccagni P, Kivisäkk U, et al. Hydrogen embrittlement of super duplex stainless steel-towards understanding the effects of microstructure and strain [J]. Int. J. Hydrogen Energy, 2018, 43: 12543
doi: 10.1016/j.ijhydene.2018.05.028
[52] Luo H W, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel [J]. Acta Mater., 2011, 59: 4002
doi: 10.1016/j.actamat.2011.03.025
[53] Park H S, Seol J B, Lim N S, et al. Study of the decomposition behavior of retained austenite and the partitioning of alloying elements during tempering in CMnSiAl TRIP steels [J]. Mater. Des., 2015, 82: 173
doi: 10.1016/j.matdes.2015.05.059
[54] Rashid M S, Rao B V N. Tempering characteristics of a vanadium containing dual phase steel [J]. Metall. Trans., 1982, 13A: 1679
[55] Sarikaya M, Jhingan A K, Thomas G. Retained austenite and tempered martensite embrittlement in medium carbon steels [J]. Metall. Trans., 1983, 14A: 1121
[56] Hui W J, Zhang Y J, Zhao X L, et al. Influence of cold deformation and annealing on hydrogen embrittlement of cold hardening bainitic steel for high strength bolts [J]. Mater. Sci. Eng., 2016, 662A: 528
[57] Zhao X L, Zhang Y J, Huang H T, et al. Effect of tempering treatment on hydrogen embrittlement sensitivity of cold-rolled and intercritically annealed medium-Mn 0.1C-5Mn steel [J]. Trans. Mater. Heat Treat., 2018, 39(10): 36
(赵晓丽, 张永健, 黄海涛 等. 回火对冷轧后退火处理中锰钢0.1C-5Mn氢脆敏感性的影响 [J]. 材料热处理学报, 2018, 39(10): 36)
[58] Takahashi J, Kawakami K, Kobayashi Y, et al. The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography [J]. Scr. Mater., 2010, 63: 261
doi: 10.1016/j.scriptamat.2010.03.012
[59] Depover T, Verbeken K. Hydrogen trapping and hydrogen induced mechanical degradation in lab cast Fe-C-Cr alloys [J]. Mater. Sci. Eng., 2016, 669A: 134
[60] Depover T, Verbeken K. The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe-C-X alloys: an experimental proof of the HELP mechanism [J]. Int. J. Hydrogen Energy, 2018, 43: 3050
doi: 10.1016/j.ijhydene.2017.12.109
[61] Chen Y N, Wang Z J, Yang T, et al. Crystallization kinetics of amorphous lead zirconate titanate thin films in a microwave magnetic field [J]. Acta Mater., 2014, 71: 1
doi: 10.1016/j.actamat.2014.03.009
[62] Li J, Xu C, Ma X Y. Effect of controlled rolling and cooling processing on microstructures and properties of V-Ti microalloy steels [J]. J. North Univ. China (Nat. Sci. Ed.), 2014, 35: 88
(李戬, 徐春, 马晓艺. 控轧控冷工艺对钒钛微合金钢组织性能的影响 [J]. 中北大学学报 (自然科学版), 2014, 35: 88)
[63] Ren X C, Chu W Y, Li J X, et al. The effects of inclusions and second phase particles on hydrogen-induced blistering in iron [J]. Mater. Chem. Phys., 2008, 107: 231
doi: 10.1016/j.matchemphys.2007.07.004
[64] Turnbull A. Perspectives on hydrogen uptake, diffusion and trapping [J]. Int. J. Hydrogen Energy, 2015, 40: 16961
doi: 10.1016/j.ijhydene.2015.06.147
[65] Wei F G, Tsuzaki K. Hydrogen absorption of incoherent TiC particles in iron from environment at high temperatures [J]. Metall. Mater. Trans., 2004, 35A: 3155
[66] Cheng L, Cai Q W, Xie B S, et al. Relationships among microstructure, precipitation and mechanical properties in different depths of Ti-Mo low carbon low alloy steel plate [J]. Mater. Sci. Eng., 2016, 651A: 185
[67] Jang J H, Lee C H, Heo Y U, et al. Stability of (Ti, M)C(M=Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Mater., 2012, 60: 208
doi: 10.1016/j.actamat.2011.09.051
[68] Song E J, Baek S W, Nahm S H, et al. Effects of molybdenum addition on hydrogen desorption of TiC precipitation-hardened steel [J]. Met. Mater. Int., 2018, 24: 532
doi: 10.1007/s12540-018-0067-x
[69] Yamasaki S, Bhadeshia H K D H. M4C3 precipitation in Fe-C-Mo-V steels and relationship to hydrogen trapping [J]. Proc. R. Soc., 2006, 462: 2315
[70] Kumnick A J, Johnson H H. Deep trapping states for hydrogen in deformed iron [J]. Acta Metall., 1980, 28: 33
doi: 10.1016/0001-6160(80)90038-3
[71] Takahashi H, Takeyama T, Hara T. Electronmicroscopic study of micro-crack formed by hydrogen precipitation in pure iron [J]. J. Jpn. Inst. Met. Mater., 1979, 43: 492
[72] Laureys A, Van den Eeckhout E, Petrov R, et al. Effect of deformation and charging conditions on crack and blister formation during electrochemical hydrogen charging [J]. Acta Mater., 2017, 127: 192
doi: 10.1016/j.actamat.2017.01.013
[73] Sun S M, Gu J L, Chen N P. The influence of hydrogen on the sub-structure of the martensite and ferrite dual-phase steel [J]. Scr. Metall., 1989, 23: 1735
doi: 10.1016/0036-9748(89)90352-9
[74] Zhao J W, Jiang Z Y, Lee C S. Effects of tungsten on the hydrogen embrittlement behaviour of microalloyed steels [J]. Corros. Sci., 2014, 82: 380
doi: 10.1016/j.corsci.2014.01.042
[75] Chen L, Xiong X L, Tao X, et al. Effect of dislocation cell walls on hydrogen adsorption, hydrogen trapping and hydrogen embrittlement resistance [J]. Corros. Sci., 2020, 166: 108428
doi: 10.1016/j.corsci.2020.108428
[76] Zhao M C, Shan Y Y, Xiao F R, et al. Investigation on the H2S-resistant behaviors of acicular ferrite and ultrafine ferrite [J]. Mater. Lett., 2002, 57: 141
doi: 10.1016/S0167-577X(02)00720-6
[77] Zackay V F, Parker E R. The changing role of metastable austenite in the design of alloys [J]. Annu. Rev. Mater. Sci., 1976, 6: 139
doi: 10.1146/annurev.ms.06.080176.001035
[78] Zhang S, Findley K O. Quantitative assessment of the effects of microstructure on the stability of retained austenite in TRIP steels [J]. Acta Mater., 2013, 61: 1895
doi: 10.1016/j.actamat.2012.12.010
[79] Seo E J, Cho L, Estrin Y, et al. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel [J]. Acta Mater., 2016, 113: 124
doi: 10.1016/j.actamat.2016.04.048
[80] McCoy R A, Gerberich W W, Zackay V F. On the resistance of TRIP steel to hydrogen embrittlement [J]. Metall. Mater. Trans., 1970, 1B: 2031
[81] Tan X D, Ponge D, Lu W J, et al. Joint investigation of strain partitioning and chemical partitioning in ferrite-containing TRIP-assisted steels [J]. Acta Mater., 2020, 186: 374
doi: 10.1016/j.actamat.2019.12.050
[1] WANG Jingyu, ZHOU Xuejie, WANG Honglun, WU Jun, CHEN Hao, ZHENG Penghua. Initial Corrosion Behavior of Carbon Steel and High Strength Steel in South China Sea Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[2] GUO Zhao, LI Han, CUI Zhongyu, WANG Xin, CUI Hongzhi. Comparative Study on Stress Corrosion Behavior of A100 Ultrahigh-strength Steel Beneath Dynamic Thin Electrolyte Layer and in Artificial Seawater Environments[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[3] LI Shuang, DONG Lijin, ZHENG Huaibei, WU Chengchuan, WANG Hongli, LING Dong, WANG Qinying. Research Progress of Stress Corrosion Cracking of Ultra-high Strength Steels for Aircraft Landing Gear[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[4] PENG Hao, CHENG Xiaoying, LI Xiaoliang, WANG Zhaofeng, CAI Zhenxiang. Effect of V and Nb on Hydrogen Traps in High Strength Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(2): 415-420.
[5] LI Han, LIU Yuanhai, ZHAO Lianhong, CUI Zhongyu. Corrosion Behavior of 300M Ultra High Strength Steel in Simulated Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
[6] WEI Huanhuan, ZHENG Dongdong, CHEN Chen, ZHANG Dawei, WANG Kaili. Corrosion Resistance of Q690 High Strength Steel in Simulated Corrosive Environment of Ocean Splash Zone[J]. 中国腐蚀与防护学报, 2023, 43(1): 186-190.
[7] WANG Yuxin, WU Bo, DAI Leyang, HU Kefeng, WU Jianhua, YANG Yang, YAN Fulei, ZHANG Xianhui. Galvanic Corrosion Behavior for Coupling of Three Low Alloy Steels in Artificial Seawater at Low Temperatures[J]. 中国腐蚀与防护学报, 2022, 42(6): 894-902.
[8] WEI Huanhuan, LEI Tianqi, ZHENG Dongdong, XIN Zhenke. Corrosion Characteristics of Butt Welds of Q690 High Strength Steel in Laboratory Test as an Enviormental Simulation of Ocean Splash Zone[J]. 中国腐蚀与防护学报, 2022, 42(4): 675-680.
[9] ZHOU Yu, ZHANG Haibing, DU Min, MA Li. Effect of Cathodic Potentials on Hydrogen Embrittlement of 1000 MPa Grade High Strength Steel in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[10] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[11] Kai WANG, Yaoyong YI, Qinghua LU, Jianglong YI, Zexin JIANG, Jinjun MA, Yu ZHANG. Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[12] Qiang GUO, Changfeng CHEN, Shihan LI, Haobo YU, Helin LI. Cracking Behavior of Cold-welding Layer on A350 LF2 Steel in H2S Environment[J]. 中国腐蚀与防护学报, 2018, 38(2): 167-173.
[13] SUN Min, XIAO Kui, DONG Chaofang, LI Xiaogang, ZHONG Ping. ELECTROCHEMICAL BEHAVIOR OF 300M AND Cr9 STEEL IN ACIDIC ENVIRONMENTS[J]. 中国腐蚀与防护学报, 2012, 32(6): 449-454.
[14] CAO Weijie;YANG Xiaolei;GAO Hua (Shanghai University of Engineering Science). THE EFFECT OF NON-PROPORTIONAL OVERLOADING ON ENVIRONMENTAL HYDROGEN INDUCED FRACTURE[J]. 中国腐蚀与防护学报, 1996, 16(3): 181-186.
[15] Cheng Yufeng;Du Yuanlong(Corrosion Science Laboratory;Institute of Corrosion and Protection of Metals;Chinese Academy of Sciences). FRACTURE MECHANISM OF MILD STEEL IN HYDROCHLORIC ACID CONTAINING Fe~(3+)[J]. 中国腐蚀与防护学报, 1995, 15(2): 81-86.
No Suggested Reading articles found!