Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (6): 849-856    DOI: 10.11902/1005.4537.2021.202
Current Issue | Archive | Adv Search |
Effects of Ce(NO3)2 Concentration and Silicate Sealing Treatment on Calcium Phosphating Film on Surface of Mg-Zn-Y-Ca Alloy for High Speed Railway Corbel
ZHOU Dianmai1, JIANG Lei2(), WANG Meiting2, LIANG Hongjia2, XIAO Yunlong2, ZHENG Li2, YU Baoyi2
1.CRRC Changchun Railway Vehicles Co. Ltd. , Changchun 130062, China
2.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110023, China
Download:  HTML  PDF(6456KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the demand for continuous increment in the running speed of high-speed trains, the standards for lightweight and ride comfort requirements have also been raised. Mg-alloy has become an inevitable trend as a critical material for high-speed trains made of alloy. The effect of Ce(NO3)2 concentration as rare earth additive in silicate containing solution for sealing treatment on the performance of calcium phosphating coating of Mg-Zn-Y-Ca alloy for swing bolster were studied by means of drop test, full immersion test, electrochemical test, scanning electron microscope and XRD analysis. The results show that the sealing treatments with and without the addition of Ce(NO3)2 all can improve the structure and corrosion resistance of the coating, and the optimal addition of Ce(NO3)2 is 0.8 g/L. Correspondingly, the acquired coating has the best corrosion resistance after sealing treatment, with an average drop time of 1002 s before break down of the coating, the corrosion rate of 0.0372 mg/(cm2·h), and the corrosion current density of 4.971×10-6 A/cm2, and the coating resistance Rf is 4854 Ω·cm2. The corrosion resistance of magnesium alloy can be greatly improved through phosphating and sealing treatment, which can meet the service requirements of high-speed iron pillow beam.

Key words:  calcium phosphating film      Ce(NO3)2      hole sealing process      corrosion resistance      Mg-alloy     
Received:  18 August 2021     
ZTFLH:  TG174  
Fund: China National Railway Group Co. Ltd., Science and Technology Research and Development Plan(P2020J024)
Corresponding Authors:  JIANG Lei     E-mail:  1138027122@qq.com
About author:  JIANG Lei, E-mail: 1138027122@qq.com

Cite this article: 

ZHOU Dianmai, JIANG Lei, WANG Meiting, LIANG Hongjia, XIAO Yunlong, ZHENG Li, YU Baoyi. Effects of Ce(NO3)2 Concentration and Silicate Sealing Treatment on Calcium Phosphating Film on Surface of Mg-Zn-Y-Ca Alloy for High Speed Railway Corbel. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 849-856.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.202     OR     https://www.jcscp.org/EN/Y2021/V41/I6/849

Fig.1  Surface micro-topographies of calcium phosphating films with 0 g/L (a), 0.4 g/L (b), 0.8 g/L (c), 1.2 g/L (d), 1.6 g/L (e) and 2.0 g/L (f) of Ce(NO3)2
Fig.2  Cross-sectional morphologies of calcium phosphating films without (a) and with (b) rare earth treated
Fig.3  EDS analysis of calcium phosphating film without (a) and with (b) rare earth treated
Fig.4  XRD pattern of calcium phosphating film without (a) and with (b) rare earth treated
Concentration / g·L-1Drip time / sAverage drip time / s
Base material20212522
0402365420396
0.4429420440430
0.8550512563542
1.2510570483521
1.6453517422464
2.0236220216224
Table 1  Drop experiment results of calcium phosphating process at different concentrations of Ce(NO3)2
Fig.5  Polarization curves of substrate and calcium phosphating samples at different concentrations of Ce(NO3)2
Concentration / g·L-1Initial mass / mgQuality after immersion / mgArea of sample / cm2Corrosion rate / mg·(cm2·h)-1
Base material1297.611249.15840.7898
01271.91227.68.76050.2107
0.41231.91188.28.70800.2091
0.81165.51131.28.26920.1728
1.21231.61193.98.70750.1804
1.61213.61175.78.66250.1823
2.01179.71130.28.56520.2403
Table 2  Immersion experiment results of calcium phosphating process at different concentrations of Ce(NO3)2
Concentration g·L-1Corrosion current density Icorr / A·cm-2Corrosion potential Ecorr / V
Base material4.416×10-3-1.507
04.007×10-5-1.476
0.43.910×10-5-1.306
0.89.625×10-6-1.498
1.21.589×10-5-1.389
1.62.630×10-5-1.354
2.04.443×10-5-1.445
Table 3  Polarization fitting results of substrate and calcium phosphating samples at different concentrations of Ce(NO3)2
Fig.6  EIS result of substrate and calcium phosphated samples at different concentrations of Ce(NO3)2
Fig.7  Equivalent circuit diagram of EIS
Concentration / g·L-1Rs / Ω·cm2Ydl / μΩ-1·cm-2·s-1ndlRct / Ω·cm2Yf / μΩ-1·cm-2·s-1nfRf / Ω·cm2
03018.50.86484.413.40.822359
0.431.217.10.8548812.90.862462
0.8200.411.60.36600.43.10.843620
1.2210.414.10.36560.88.90.872906
1.6180.415.50.3353210.60.772555
2.068.820.10.6644214.00.902316
Table 4  EIS fitting results of calcium phosphating samples at different concentrations of Ce(NO3)2
Fig.8  Surface micro-topographies (a, b) and EDS analysis (c) of calcium phosphating film after sealing treatment
Fig.9  XRD pattern of calcium phosphating film after sealing treatment
Fig.10  Surface macro-topographies of Mg-alloy specimen after immersion corrosion: (a) substrate, (b) unsealed hole test, (c) calcium system sealed hole sample
Fig.11  Polarization curves (a) and EIS (b) of samples after different calcium phosphating processes
1 He J H. A brief analysis of the application of new lightweight materials for high-speed trains from the perspective of energy-saving [J]. Railway Energy Sav. Environ. Prot. Occup. Saf. Health, 2020, 10(5): 3
何九红. 浅析节能视角下高速列车轻量化新材料应用 [J]. 铁路节能环保与安全卫生, 2020, 10(5): 3
2 Liu J A. Development and application of aluminium alloy products in traffic transport industry [J]. Sichuan Nonferrous Met., 2001, (2): 21
刘静安. 铝材在交通运输工业中的开发与应用 [J]. 四川有色金属, 2001, (2): 21
3 Song Y L. Structure optimization of the high-speed railway’s swing boleter of aluminum alloy and the research of forming process [D]. Shenyang: Shenyang University of Technology, 2013
宋艳磊. 高铁铝合金枕梁结构优化及成形工艺研发 [D]. 沈阳: 沈阳工业大学, 2013
4 Jiang L, Zhang T C, Cui Y L. Modern Metal Materials and Applications [M]. Xuzhou: China University of Mining and Technology Press, 2009
江利, 张太超, 崔永丽. 现代金属材料及应用 [M]. 徐州: 中国矿业大学出版社, 2009
5 Zhou Y. Phosphate treatment of magnesium alloy and corrosion resistance [D]. Beijing: Beijing University of Chemical Technology, 2012
周勇. 镁合金磷化处理及其耐蚀性研究 [D]. 北京: 北京化工大学, 2012
6 Yu H R, Zhang W L, Cui Z Y. Difference in corrosion behavior of four Mg-alloys in Cl--NH4+-NO3- containing solution [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 553
于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究 [J]. 中国腐蚀与防护学报, 2020, 40: 553
7 Jia Y Z, Wang B J, Zhao M J, et al. Effect of solid solution treatment on corrosion and hydrogen evolution behavior of an as-extruded Mg-Zn-Y-Nd alloy in an artificial body fluid [J]. J. Chin.Soc. Corros.Prot., 2020, 40: 351
郏义征, 王保杰, 赵明君等. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究 [J]. 中国腐蚀与防护学报, 2020, 40: 351
8 Chen H, Wang C C, Kang Y B, et al. Research status of micro-arc oxidation of magnesium alloy [J]. Surf. Technol., 2019, 48(7): 49
陈宏, 王成成, 康亚斌等. 镁合金微弧氧化的研究现状 [J]. 表面技术, 2019, 48(7): 49
9 Jiang B L, Zhang S F, Wu G J. The study of the corrosion resistance of the ceramic coatings formed by micro-arc oxidation on the Mg-base alloy [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 300
蒋百灵, 张淑芬, 吴国建. 镁合金微弧氧化陶瓷层耐蚀性的研究 [J]. 中国腐蚀与防护学报, 2002, 22: 300
10 Liu M M. Study of preparation and properties of phosphate conversion coating on AZ91D magnesium alloy [D]. Taiyuan: Taiyuan University of Technology, 2018
刘苗苗. AZ91D镁合金磷酸盐转化膜的制备及其性能研究 [D]. 太原: 太原理工大学, 2018
11 Wang Z H, Zhang J M, Bai L J, et al. Microstructure and property of composite coatings on AZ91 Mg-alloy prepared by micro-arc oxidation and electroless Cu-layer [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 391
王志虎, 张菊梅, 白力静等. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能 [J]. 中国腐蚀与防护学报, 2018, 38: 391
12 Ren C. Discussion on corrosion properties and protection of magnesium alloys [J]. Sci. Technol. Inform., 2016, 14(19): 63
任翀. 镁合金的腐蚀特性及防护探讨 [J]. 科技资讯, 2016, 14(19): 63
13 Lu S, Fu L, Chen J. Research review of thermal spraying on magnesium alloys [J]. J. Jiangsu Univ. Sci. Technol. (Nat. Sci. Ed.), 2010, 24: 249
芦笙, 付丽, 陈静. 镁合金热喷涂研究进展 [J]. 江苏科技大学学报 (自然科学版), 2010, 24: 249
14 Shi N, Zhang S D, Tian Y H. Study on phosphate process for AZ91D magnesium alloy [J]. Electroplat. Pollut. Control, 2017, 37(5): 33
史宁, 张书弟, 田亚辉. AZ91D镁合金磷化工艺的研究 [J]. 电镀与环保, 2017, 37(5): 33
15 Zeng R C, Hu Y, Zhang F, et al. Corrosion resistance of cerium-doped zinc calcium phosphate chemical conversion coatings on AZ31 magnesium alloy [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 472
16 Ding F. Study on the calcium phosphating process and the corrosion resistance properties of AZ31 magnesium alloys [D]. Maanshan: Anhui University of Technology, 2013
丁飞. AZ31镁合金钙系磷化工艺及腐蚀性能研究 [D]. 马鞍山: 安徽工业大学, 2013
17 Lu Y B. Preparation and fluoride treatment of the calcium-phosphorus coating on the AZ60 magnesium alloy [D]. Changchun: Jilin University, 2014
卢艳波. AZ60镁合金表面钙系磷化膜的制备及其后续氟化处理 [D]. 长春: 吉林大学, 2014
18 Zhang Y. Study on micro-arc oxidation nano-ceramic coatings formed on cast aluminum alloys and its properties [D]. Hangzhou: Zhejiang University of Technology, 2017
张宇. 铸造铝合金微弧氧化纳米陶瓷涂层制备工艺优化及其性能研究 [D]. 杭州: 浙江工业大学, 2017
[1] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[2] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[3] LIU Xing, RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, LONG Bin. Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[4] DING Yukang, CHEN Guomei, NI Zifeng, LIU Yaxuan, QIAN Shanhua, BIAN Da, ZHAO Yongwu. Corrosion Resistance of Silane Film Modified by Hexagonal Boron Nitride[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[5] WU Lintao, ZHOU Zehua, ZHANG Xin, YANG Guangheng, ZHANG Kaicheng, WANG Guangyu. Long-term Corrosion Resistance of Plasma Sprayed FeCrMoCBY Fe-based Amorphous Coating in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[6] LIU Hongyu, ZHANG Xiqing, TENG Yingxue, LI Shengli. Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[7] YANG Guangheng, ZHOU Zehua, ZHANG Xin, WU Lintao, MEI Wan. Influence of Magnetic Field on Corrosion Behavior of Al-Mg Alloys with Different Mg Content[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[8] LANG Fengjun, HUANG Feng, XU Jinqiao, LI Liwei, YUE Jiangbo, LIU Jing. Composition Design and Corrosion Resistance of Mg Microallyed X70 Grade Acid Resistant Submarine Pipeline Steel (X70MOS)[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[9] FENG Yanpeng, ZHANG Xian, WU Kaiming, YANG Miao. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[10] ZHANG Haoran, WU Hongyan, WANG Shanlin, ZUO Yao, CHEN Yuhua, YIN Limeng. Pitting Behavior of Fe-based Amorphous Alloy with Sulfide Inclusion[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[11] SHI Jian, HU Xuewen, HE Bo, YANG Zheng, GUO Rui, WANG Fei. Sulfuric Acid Corrosion Resistance of Q345NS Steel Welded Joint[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
[12] WANG Xiaoge, GAO Kewei, YAN Luchun, YANG Huisheng, PANG Xiaolu. Effect of Ce on Corrosion Resistance of Films of ZnAlCe-layered Double Hydroxides on Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[13] WANG Dongliang, DING Huaping, MA Yunfei, GONG Pan, WANG Xinyun. Research Progress on Corrosion Resistance of Metallic Glasses[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
[14] QIAO Jisen, XIA Zonghui, LIU Libo, XU Jiamin, LIU Xudong. Corrosion Resistance of Aluminum-magnesium Bimetal Composite Material Prepared by Isothermal Indirect Extrusion[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[15] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
No Suggested Reading articles found!