Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (6): 843-848    DOI: 10.11902/1005.4537.2020.163
Current Issue | Archive | Adv Search |
Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel
ZHENG Shien1, PAN Yingjun1(), ZHANG Heng2, KE Deqing1, YANG Ling1, ZHU Xingyu1
1.College of Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
2.Wuhan Chunhe Technology Co, Ltd. , Wuhan 430223, China
Download:  HTML  PDF(3127KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A ternary boride cermet coating was prepared on 304 stainless steel by plasma cladding technique. The microstructure and phase composition of the cladding layer were characterized by optical microscope, scanning electron microscope and X-ray diffraction. The hardness distribution of the cladding layer was measured with a micro-hardness tester, and the corrosion resistance of the cladding layer was also studied. The results showed that the boride cladding layer forms a good metallurgical bond with the 304 stainless steel, and no defects such as macro cracks and holes were found at the interface. The average microhardness of the cladding layer was 630.4 HV0.5, which was three times higher than 304 stainless steel (HV0.5≤200), effectively improving the surface hardness of 304 stainless steel. After immersion test in 10%HNO3+3%HF acidic solution for 48 h, the maximum corrosion depth ratio of the bare 304 stainless steel and the cladding layer is 77 and 9 μm respectively, so the corrosion resistance of the cladding layer is better than that of 304 stainless steel.

Key words:  304 stainless steel      plasma cladding      boride coating      corrosion resistance      hardness     
Received:  16 September 2020     
ZTFLH:  TG174  
Fund: Youth Fund of State Key Laboratory of Refractory and Metallurgy, Wuhan University of Science and Technolog(2018QN04);Open Fund of Iron and Steel Metallurgy and Resource Utilization Department Co-construction of the Ministry of Education Key Laboratory, Wuhan Universityof Science and Technology(FMRUlab17-7)
Corresponding Authors:  PAN Yingjun     E-mail:  hbwhpyj@163.com
About author:  PAN Yingjun, E-mail: hbwhpyj@163.com

Cite this article: 

ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 843-848.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.163     OR     https://www.jcscp.org/EN/Y2021/V41/I6/843

Fig.1  Metallographic structure of boride cladding layer on 304 stainless steel surface
Fig.2  XRD pattern of cladding surface of 304 stainless steel
Fig.3  Hardness curves of annealed cladding at different temperatures
Fig.4  Corrosion morphologies of 304 stainless steel (a, b) and clading layer (c, d) mixed with acid after soaking for 48 h
Fig.5  Interface morphology of cladding layer/304 stainless steel and element line scan
Fig.6  Microstructure of cladding layer
SpectrumMass fraction / %Atomic fraction / %
MoFeCrNiMoFeCrNi
133.0750.0016.93---22.0257.1820.80---
26.4175.3113.384.843.8176.8514.654.70
324.5557.1914.833.6015.7663.0717.573.60
Table 1  EDS analysis of each point in Fig.6
Fig.7  Polarization curves of cladding layer and 304 stainless steel under acidic conditions (a) and neutral conditions (b)
SampleCorrosion conditionEcorr / mVIcorr / A·cm-2
304 stainless steel10%HNO3+3%HF-144.5432.4872×10-3
5%NaCl-292.3395.0461×10-7
Cladding layer10%HNO3+3%HF-108.225.43463×10-3
5%NaCl-370.6222.25786×10-6
Table 2  Polarization curve fitting results of 304 stainless steel and boride cladding layer
1 Liu X, Yan B H, Liu Y R. Corrosion behavior of 304 stainless steel in dilute sulfuric acid [J]. Sichuan Metall., 2017, 39(5): 57
刘欣, 闫秉昊, 刘友荣. 304不锈钢在稀硫酸溶液中的腐蚀行为探讨 [J]. 四川冶金, 2017, 39(5): 57
2 Li W H. Effect of Mo/TiC content on microstructure and properties of Mo2FeB2-TiC multiphase cermets [J]. Heat Treat. Met., 2019, 44(8): 73
李文虎. Mo/TiC含量对Mo2FeB2-TiC复相金属陶瓷组织和性能的影响 [J]. 金属热处理, 2019, 44(8): 73
3 Wang X R, Li H, Yan H Y, et al. Progress in application research of metal-base ceramics [J]. Hot Work. Technol., 2019, 48(14): 12
王新蕊, 李慧, 严红燕等. 金属基陶瓷的应用研究进展 [J]. 热加工工艺, 2019, 48(14): 12
4 Ma D D. Influencing factors and development trend of Ti(C,N)-based cermets [J]. Ceramics, 2018, (7): 20
马调调. Ti(C,N) 基金属陶瓷性能影响因素及发展趋势 [J]. 陶瓷, 2018, (7): 20
5 Turchi C. Cermet material could aid the development of future power plants [J]. Nature, 2018, 562: 346
6 Villars P, Cenzual K, Gladyshevskii R, et al. Mo2FeB2 [J]. Landolt Börnstein, 2012, 39: 439
7 Ke D, Pan Y, Xu Y, et al. Microstructure and mechanical properties of Mo2FeB2 ceramic-steels with Nb/V addition [J]. Adv. Appl. Ceram., 2017, 116: 92
8 Yamasaki Y, Nishi M, Takagi K I. Development of very high strength Mo2NiB2 complex boride base hard alloy [J]. J. Solid State Chem., 2004, 177: 551
9 Rao Q L, Wang H W, Zhou R H. Structure transformations and property of electroless Ni-B coating [J]. J. Mater. Eng., 2000, (6): 30
饶群力, 王浩伟, 周尧和. 高硬度镍硼合金涂层的组织转变和性能 [J]. 材料工程, 2000, (6): 30
10 Ke D Q, Pan Y J, Xu Y Y, et al. VC and Cr3C2 doped WCoB-TiC ceramic composites prepared by hot-pressing [J]. Int. J. Refract. Met. Hard Mater., 2017, 68: 24
11 Ke D Q, Pan Y J, Lu X F, et al. Influence and effectivity of Sm2O3 and Cr3C2 grain growth inhibitors on sintering of WCoB-TiC based cermets [J]. Ceram. Int., 2015, 41: 15235
12 Ke D Q, Pan Y J, Tong X Y. Study on the microstructure and properties of Ni60 coating by plasma spray welding on copper [J]. Surf. Technol., 2013, 42(4): 91
柯德庆, 潘应君, 童向阳. 纯铜表面等离子喷焊Ni60涂层组织及性能的研究 [J]. 表面技术, 2013, 42(4): 91
13 Natarajan S. Thermochemical surface engineering of steels [J]. Surf. Eng., 2015, 31: 875
14 Quan C, Wang P, Deng S J, et al. Cathode plasma electrolytic deposition with large area [J]. Met. World, 2015, (1): 78
权成, 王鹏, 邓舜杰等. 阴极等离子电解大面积沉积涂层技术 [J]. 金属世界, 2015, (1): 78
15 Chan C W, Carson L, Smith G C, et al. Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering [J]. Appl. Surf. Sci., 2017, 404: 67
16 Manzhirov A V. Advances in the theory of surface growth with applications to additive manufacturing technologies [J]. Proced. Eng., 2017, 173: 11
[1] ZHOU Dianmai, JIANG Lei, WANG Meiting, LIANG Hongjia, XIAO Yunlong, ZHENG Li, YU Baoyi. Effects of Ce(NO3)2 Concentration and Silicate Sealing Treatment on Calcium Phosphating Film on Surface of Mg-Zn-Y-Ca Alloy for High Speed Railway Corbel[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[2] LIU Xing, RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, LONG Bin. Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[3] DING Yukang, CHEN Guomei, NI Zifeng, LIU Yaxuan, QIAN Shanhua, BIAN Da, ZHAO Yongwu. Corrosion Resistance of Silane Film Modified by Hexagonal Boron Nitride[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[4] AN Yiqiang, WANG Xin, CUI Zhongyu. Effect of Nitric Acid Passivation on Critical Cl- Concentration for Corrosion of 304 Stainless Steel in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[5] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[6] GAI Xipeng, LEI Li, CUI Zhongyu. Pitting Corrosion Behavior of 304 Stainless Steel in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[7] LANG Fengjun, HUANG Feng, XU Jinqiao, LI Liwei, YUE Jiangbo, LIU Jing. Composition Design and Corrosion Resistance of Mg Microallyed X70 Grade Acid Resistant Submarine Pipeline Steel (X70MOS)[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[8] FENG Yanpeng, ZHANG Xian, WU Kaiming, YANG Miao. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[9] WU Lintao, ZHOU Zehua, ZHANG Xin, YANG Guangheng, ZHANG Kaicheng, WANG Guangyu. Long-term Corrosion Resistance of Plasma Sprayed FeCrMoCBY Fe-based Amorphous Coating in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[10] LIU Hongyu, ZHANG Xiqing, TENG Yingxue, LI Shengli. Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[11] YANG Guangheng, ZHOU Zehua, ZHANG Xin, WU Lintao, MEI Wan. Influence of Magnetic Field on Corrosion Behavior of Al-Mg Alloys with Different Mg Content[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[12] ZHANG Haoran, WU Hongyan, WANG Shanlin, ZUO Yao, CHEN Yuhua, YIN Limeng. Pitting Behavior of Fe-based Amorphous Alloy with Sulfide Inclusion[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[13] SHI Jian, HU Xuewen, HE Bo, YANG Zheng, GUO Rui, WANG Fei. Sulfuric Acid Corrosion Resistance of Q345NS Steel Welded Joint[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
[14] WANG Dongliang, DING Huaping, MA Yunfei, GONG Pan, WANG Xinyun. Research Progress on Corrosion Resistance of Metallic Glasses[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
[15] WANG Xiaoge, GAO Kewei, YAN Luchun, YANG Huisheng, PANG Xiaolu. Effect of Ce on Corrosion Resistance of Films of ZnAlCe-layered Double Hydroxides on Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
No Suggested Reading articles found!