Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (4): 508-516    DOI: 10.11902/1005.4537.2020.140
Current Issue | Archive | Adv Search |
Effect of Sand Size and Temperature on Synergistic Effect of Erosion-corrosion for 20 Steel in Simulated Oilfield Produced Fluid with Sand
REN Ying1, ZHAO Huijun1(), ZHOU Hao1, ZHANG Jianwei1, LIU Wen1, YANG Zuying2, WANG Lei3
1.Jiangsu Key Laboratory of Oil-Gas Storage and Transportation Technology, Changzhou 213016, China
2.Business School Changzhou University, Changzhou 213016, China
3.Petrochina Southwest Oil and Gas Field Company Gas Transportation Management Department, Chengdu 610000, China
Download:  HTML  PDF(14226KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The erosion-corrosion behavior of 20 steel in simulated oilfield produced fluid with different sand particle sizes and at different temperatures was studied via a rotating cylindrical electrode experimental device, as well as other methods such as corrosion mass loss measurement, morphological observation and electrochemical techniques. The results show that the increase of sand particle size can obviously promote the erosion wear of 20 steel, which is consistent with the morphology observation. With the increase of sand particle size, both the effect of corrosion promoting erosion and the effect of erosion promoting corrosion firstly increase and then decrease. When the sand particle size is in the range of 40~70 μm to 120~200 μm, the erosion-corrosion mode of the steel may mainly be ascribed to the mixed control of erosion and electrochemical corrosion. When the particle size of the sand is 200~300 μm, the erosion wear is dominant. The erosion-corrosion of 20 steel at different temperatures is mainly controlled by erosion and electrochemical corrosion. The higher the temperature, the much obvious the promotion effect of corrosion on erosion.

Key words:  20 steel      erosion corrosion      sand particle size      temperature      synergism effect     
Received:  03 August 2020     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(41801194);Open Project of Jiangsu Key Laboratory of Oil and Gas Storage and Transportation(CDYQCY202004);2019 Changzhou University Undergraduate Innovation and Entrepreneurship Fund Project(2019-04-C-36)
Corresponding Authors:  ZHAO Huijun     E-mail:  zhj@cczu.edu.cn
About author:  ZHAO Huijun, E-mail: zhj@cczu.edu.cn

Cite this article: 

REN Ying, ZHAO Huijun, ZHOU Hao, ZHANG Jianwei, LIU Wen, YANG Zuying, WANG Lei. Effect of Sand Size and Temperature on Synergistic Effect of Erosion-corrosion for 20 Steel in Simulated Oilfield Produced Fluid with Sand. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 508-516.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.140     OR     https://www.jcscp.org/EN/Y2021/V41/I4/508

Fig.1  Erosion-corrosion polarization curves of 20 steel under the conditions of different sand sizes
Sand size / μmEcorr / VIcorr / A·cm-2
40~70-0.6601.194×10-4
70~120-0.7121.717×10-4
120~200-0.6641.906×10-4
200~300-0.6631.469×10-4
Table 1  Fitting parameters of erosion-corrosion polarization curves of 20 steel under the conditions of different sand sizes
Fig.2  EIS of 20 steel after erosion-corrosion under the conditions of different sand sizes
Fig.3  Equivalent circuit diagram for fitting EIS of 20 steel under the conditions of different sand sizes
Sand size / μmRs / Ω·cm2Rp1 / Ω·cm2CPE1-Y0 / Ω·cm2·s-1nRp2 / Ω·cm2CPE2-Y0 / Ω·cm2·s-1n
40~702.056.2761.82×10-50.7043106.80.010890.7348
70~1202.5714.9534.3×10-60.8307103.70.018820.6949
120~2002.0063.9621.757×10-50.727975.670.01580.7399
200~3002.2784.8884.063×10-60.836580.430.017520.7215
Table 2  Fitting parameters of EIS of 20 steel under the conditions of different sand sizes
Fig.4  Mass loss rates of 20 steel under the conditions of different sand sizes
Sand size / μmE / mg·cm-2·h-1C / mg·cm-2·h-1Ec / mg·cm-2·h-1Ce / mg·cm-2·h-1E / CT / mg·cm-2·h-1
40~701.5400.1661.5230.1049.2771.706
70~1201.6160.1791.6090.1299.0281.795
120~2001.9640.1981.9390.1389.9192.162
200~3001.7080.1521.6870.09811.2371.860
Table 3  Analysis results of corrosion data under the conditions of different sand sizes
Dominant factorE / C value
Electrochemical corrosion dominatesE / C<0.1
Electrochemistry-erosion dominates0.1<E / C<1
Erosion-electrochemistry dominates1<E / C<10
Erosion and wear dominateE / C>10
Table 4  Judgment table of dominant factors in erosion-corrosion process
Fig.5  Erosion corrosion surface morphologies y of 20 steel after erosion-corrosion with under the conditions of different sand particle sizes: (a) 40~70 μm, (b) 70~120 μm, (c) 120~200 μm, (d) 200~300 μm
Fig.6  Erosion-corrosion polarization curves of 20 steel at different temperatures
Temperature / ℃Ecorr / VIcorr / A·cm-2
20-0.5618.053×10-6
40-0.7552.829×10-5
60-0.8581.132×10-4
80-0.8615.699×10-4
Table 5  Fitting parameters of erosion-corrosion polarization curves of 20 steel at different temperatures
Fig.7  EIS curve of 20 steel after pure corrosion at different temperatures
Fig.8  EIS curve of 20 steel after erosion corrosion at different temperatures
Fig.9  Equivalent circuit diagram of EIS of 20 steel at different temperatures
Temperature / ℃Rs / Ω·cm2Rp1 / Ω·cm2CPE1-Y0 / Ω·cm2·s-1nRp2 / Ω·cm2CPE2-Y0 / Ω·cm2·s-1n
206.50559.184.494×10-30.861564.740.58080.7872
405.43533.416.42×10-30.799615.690.89331
602.42111.041.291×10-20.843512.220.64310.8808
802.692.1112.854×10-40.72034.9090.031390.7417
Table 6  Fitting parameters of EIS of 20 steel at different temperatures
Fig.10  Mass loss rates of 20 steel during erosion, corrosion and erosion-corrosion processes at different temperatures
Temperature / ℃E / mg·cm-2·h-1C / mg·cm-2·h-1Ec / mg·cm-2·h-1Ce / mg·cm-2·h-1E / CT / mg·cm-2·h-1
201.2650.1481.0480.0818.5471.413
401.5830.3491.5730.0194.5361.932
602.1960.5752.1820.0313.8212.771
802.7030.7142.6890.0543.7823.417
Table 7  Analysis results of corrosion data at different temperatures
Fig.11  Surface morphologies of 20 steel after erosion corrosion for 8 h at 20 ℃ (a), 40 ℃ (b), 60 ℃ (c)and 80 ℃ (d)
1 Dai Z, Shen S M, Ding G Q. Erosion-corrosion and protection of metals in fluids with solid particles [J]. Corros. Prot., 2007, 28: 86
代真, 沈士明, 丁国铨. 金属在固液两相流体中的冲刷腐蚀及其防护 [J]. 腐蚀与防护, 2007, 28: 86
2 López D, Falleiros N A, Tschiptschin A P. Effect of nitrogen on the corrosion-erosion synergism in an austenitic stainless steel [J]. Tribol. Int., 2011, 44: 610
3 Khan R, Ya H H, Pao W, et al. Erosion-corrosion of 30°, 60° and 90° carbon steel elbows in a multiphase flow containing sand particles [J]. Materials, 2019, 12: 3898
4 Xiang H L, Hu Y R, Cao H T, et al. Erosion-corrosion behavior of SAF3207 hyper-duplex stainless steel [J]. Int. J. Mine. Metall. Mater., 2019, 26: 1415
5 Malka R, Nešić S, Gulino D A. Erosion-corrosion and synergistic effects in disturbed liquid-particle flow [J]. Wear, 2007, 262: 791
6 Zadeh S A, Rashidi P. The effect of fluid velocity and microstructure on erosion corrosion of two-phase CK45 steel [J]. Results Mater., 2020, 6: 100077
7 Xu Z. Research on the erosion-corrosion behavior of P110 steel in liquid-solid two-phase flow [D]. Daqing: Northeast Petroleum University, 2011
徐哲. 液固两相流条件下P110钢冲刷腐蚀研究 [D]. 大庆: 东北石油大学, 2011
8 Aguirre J, Walczak M. Effect of dissolved copper ions on erosion-corrosion synergy of X65 steel in simulated copper tailing slurry [J]. Tribol. Int., 2017, 114: 329
9 Khayatan N, Ghasemi H M, Abedini M. Synergistic erosion-corrosion behavior of commercially pure titanium at various impingement angles [J]. Wear, 2017, 380/381: 154
10 Zhang F X, Ba D, Liu H T, et al. Study on the erosion and corrosion of super 13Cr tubing in fracturing [J]. China Pet. Mach., 2014, 42(8): 89
张福祥, 巴旦, 刘洪涛等. 压裂过程超级13Cr油管冲刷腐蚀交互作用研究 [J]. 石油机械, 2014, 42(8): 89
11 Owen J, Ramsey C, Barker R, et al. Erosion-corrosion interactions of X65 carbon steel in aqueous CO2 environments [J]. Wear, 2018, 414/415: 376
12 Zhang A F, Xing J D, Zhou X Y. A quantitative investigation on interaction between erosion and corrosion of carbon steel and stainless steel in corrosion slurry [J]. Foundry, 2003, 52: 260
张安峰, 邢建东, 周心艳. 碳钢与不锈钢在腐蚀浆料中冲刷腐蚀交互作用的定量研究 [J]. 铸造, 2003, 52: 260
13 Lin Y Z, Liu J J, Yong X Y, et al. Application of numerical method to study of flow-induced corrosion—(I) metal corrosion under laminar condition [J]. J. Chin. Soc. Corros. Prot., 1999, 19: 1
林玉珍, 刘景军, 雍兴跃等. 数值计算法在流体腐蚀研究中的应用—(I) 层流条件下金属的腐蚀 [J]. 中国腐蚀与防护学报, 1999, 19: 1
14 Li P. Study on erosion-corrosion behavior of stainless steel in acidic liquid-solid two-phase flow [D]. Wuhan: Huazhong University of Science and Technology, 2006
李平. 酸性液固两相流中不锈钢冲刷腐蚀行为的研究 [D]. 武汉: 华中科技大学, 2006
15 Cao X W, Xu K, Peng W S. Simulation and analysis of liquid-solid two-phase flow erosion failure in pipe bends [J]. Surf. Technol., 2016, 45(8): 124
曹学文, 胥锟, 彭文山. 弯管液固两相流冲蚀失效模拟分析 [J]. 表面技术, 2016, 45(8): 124
16 Jiang Z C, Yang Y, Peng H P, et al. Erosion corrosion behavior of X80 steel in multiphase flow with different sand particle sizes [J]. Corros. Prot., 2018, 37(11): 76
姜志超, 杨燕, 彭浩平等. X80钢在不同砂粒粒径下的多相流中的冲刷腐蚀行为 [J]. 腐蚀防护, 2018, 37(11): 76
17 Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002
18 Li Q. Study of local erosion-corrosion of pipeline steel under multiphase flow of oil/water/sand [D]. Qingdao: China University of Petroleum (East China), 2013
李强. 管线钢油/水/砂多相流冲刷局部腐蚀研究 [D]. 青岛: 中国石油大学 (华东), 2013
19 Stack M M, El Badia T M A. Mapping erosion-corrosion of WC/Co-Cr based composite coatings: particle velocity and applied potential effects [J]. Surf. Coat. Technol., 2006, 201: 1335
20 Zhang X Y, Zhu C, Sun L L, et al. Erosion-corrosion influence of sand particle size and chloride ions on P110 steel [J]. Chem. Eng. Mach., 2012, 39: 447
张旭昀, 朱闯, 孙丽丽等. 砂粒和氯离子对P110钢冲刷与腐蚀性能的影响 [J]. 化工机械, 2012, 39: 447
21 Hao L S, Zheng F, Chen X P, et al. Erosion corrosion behavior of aluminum in flowing deionized water at various temperatures [J]. Materials, 2020, 13: 779
22 Zhu J, Zhang Q B, Chen Y, et al. Progress of study on erosion-corrosion [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 199
朱娟, 张乔斌, 陈宇等. 冲刷腐蚀的研究现状 [J]. 中国腐蚀与防护学报, 2014, 34: 199
23 Hu X, Neville A. The electrochemical response of stainless steels in liquid-solid impingement [J]. Wear, 2005, 258: 641
24 Neville A, Reyes M, Xu H. Examining corrosion effects and corrosion/erosion interactions on metallic materials in aqueous slurries [J]. Tribol. Int., 2002, 35: 643
25 Clark H M, Burmeister L C. The influence of the squeeze film on particle impact velocities in erosion [J]. Int. J. Impact Eng., 1992, 12: 415
26 Wang J C. Synergistic effect of erosion-corrosion of liquid-solid two-phase fluid [J]. J. Henan Sci. Technol., 2013, (10): 60
王建才. 液固两相流体冲刷腐蚀的协同作用 [J]. 河南科技, 2013, (10): 60
27 Zhang Y, Dong J H. Effect of dentist, temperature and scouring on the soda corrosion resistance performance of Ni-Cu alloy cast iron [J]. Found. Technol., 2011, 32: 642
张毅, 董俊慧. 烧碱浓度、温度、冲刷对镍铜合金铸铁耐碱腐蚀性能的影响 [J]. 铸造技术, 2011, 32: 642
[1] RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of Temperature on Corrosion Behavior of 14Cr12Ni3-WMoV Stainless Steel in 0.02 mol/L NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[2] LI Ruitao, XIAO Bo, LIU Xiao, ZHU Zhongliang, CHENG Yi, LI Junwan, CAO Jieyu, DING Haimin, ZHANG Naiqiang. Corrosion Behavior of Low Alloy Heat-resistant Steel T23 in High-temperature Supercritical Carbon Dioxide[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
[3] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[4] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[5] LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[6] WANG Lei, DONG Junhua, HAN Da, LIANG Jiankun, LI Quan, KE Wei. Phenonmenon of Cu Segregation in Cu-containing steel During Soaking at 1150 ℃[J]. 中国腐蚀与防护学报, 2020, 40(6): 545-552.
[7] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[8] WANG Haiwei, CHANG Sen, LUAN Xin'gang, SONG Xuemei, WANG Zhen, LI Yanzhang, CHEN Jianli, ZHANG Jirong, HAN Ming, QIU Dangui. Preparation and Properties of Ceramics Composed of Nano-Al2O3 and Polysiloxane-polyborosilicate-TiB2 Modified Polysilborazane as High Temperature Adhesive for SiC Based Ceramics[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[9] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[10] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[11] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[12] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[13] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[14] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[15] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
No Suggested Reading articles found!