Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (3): 353-361    DOI: 10.11902/1005.4537.2020.096
Current Issue | Archive | Adv Search |
Adsorption and Inhibition Behavior of Imidazoline on Steel Surface in Trichloroacetic Acid Solution
WANG Lizi, LI Xianghong()
College of Chemical Engineering, Southwest Forestry University, Kunming 650224, China
Download:  HTML  PDF(5498KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion inhibition performance of imidazoline (IM) in trichloroacetic acid (Cl3CCOOH) solution on cold-rolled steel sheet was studied by means of mass loss method, potential polarization curve measurement and electrochemical impedance spectroscopy (EIS) as well as SEM and AFM. The hydrophilicity/hydrophobicity of the steel after immersion in the IM containing solution were assessed by contact angle measurement. While the adsorption mode of IM on the steel surface and the effect of protonation on the adsorption behavior of IE molecules are studied by quantum chemistry. The results show that IM can effectively slow down the corrosion of the cold-rolled steel in 0.10 mol/L Cl3CCOOH solution, and the corrosion inhibition efficiency exceeds 95% in the solution with 500 mg/L IM at 20 ℃. The adsorption of Cl3CCOOH on the steel surface is a mixed adsorption following the Langmuir adsorption isotherm. The Nyquist spectrum of the steel in 0.10 mol/L Cl3CCOOH solution without and with addition of IM is all composed of capacitive reactance arc in the high frequency region and inductive arc in the low frequency region. However, after IM addition, the charge transfer resistance, inductor resistance and inductance value all increase significatly, meanwhile, the corrosion degree of the steel drops sharply. The contact angle test result showed that after IM addition, the hydrophobicity of the steel surface increased. Quantum chemical calculation results show that IM could easy be protonized to generate p-IM, therewith weakened its ability as electron donor whereas, strengthened that as electron acceptor.

Key words:  imidazoline      steel      trichloroacetic acid      inhibition      adsorption      quantum chemical calculation     
Received:  08 June 2020     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51761036);Training Programs of Young and MiddleAged Academic and Technological Leaders in Yunnan Province(2015HB049);Special Project of "Top Young Talents" of Yunnan Ten Thousand Talents Plan(51900109)
Corresponding Authors:  LI Xianghong     E-mail:  xianghong-li@163.com
About author:  LI Xianghong, E-mail: xianghong-li@163.com

Cite this article: 

WANG Lizi, LI Xianghong. Adsorption and Inhibition Behavior of Imidazoline on Steel Surface in Trichloroacetic Acid Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 353-361.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.096     OR     https://www.jcscp.org/EN/Y2021/V41/I3/353

Fig.1  Variations of the corrosion inhibition rate (ηw) of IM on test steel with the concentration (c) of IM in 0.10 mol/L Cl3CCOOH
Fig.2  Langmuir isotherm adsorption mode of IM on test steel in 0.10 mol/L Cl3CCOOH solution
T / ℃r 2SlopeK / L·mg-1K / L·mol-1ΔG0 / kJ·mol-1
200.99971.030.1167.98×103-31.7
300.99961.074.5783.30×105-42.1
400.99591.120.2521.81×104-36.0
500.98271.190.0694.98×103-33.7
Table 1  Linear regression parameters of c/θ-c and ΔG0 at different temperatures
Fig.3  Potentiodynamic polarization curves of test steel in Cl3CCOOH solution at 20 ℃
cmg·L-1EcorrmVbcmV·dec-1ba mV·dec-1IcorrµA·cm-2ηp%
0-339-3051281538---
50-334-20810524584.1
250-354-30110612292.1
500-351-262785196.7
Table 2  Electrochemical corrosion parameters of test steel in 0.10 mol/L Cl3CCOOH solution at 20 ℃
Fig.4  Nyquist plots of test steel in Cl3CCOOH solution at 20 ℃
Fig.5  Equivalent circuit for fitting EIS of test steel in Cl3CCOOH solition
c / mg/LRs / Ω·cm2Rt / Ω·cm2RL / Ω·cm2L / H·cm2nQ / μF·cm-2ηR / %
06.816.632.8930.84394---
507.9101.5175.719920.867481.3
2507.3197.7350.730080.807390.6
5007.7280.2430.571630.816692.4
Table 3  Fitting EIS parameters for test steel in Cl3CCOOH solution at 20 ℃
Fig.6  SEM surface images of test steel before (a) and after immersion in 0.10 mol/L Cl3CCOOH solution without inhibitor (b) and with 500 mg/L IM (c) at 20 ℃ for 6 h
Fig.7  3D-AFM images of test steel before (a) and after immersion in 0.10 mol/L Cl3CCOOH solution without inhibitor (b) and with 500 mg/L IM (c) at 20 ℃ for 6 h
Fig.8  Contact angle images of test steel before (a) and after immersion in 0.10 mol/L Cl3CCOOH solution without inhibitor (b) and with 500 mg/L IM (c) at 20 ℃ for 6 h
Fig.9  Optimized molecular structures and front-line orbital distributions of IM (a), IM (HOMO) (b), IM (LUMO) (c), p-IM (d), p-IM (HOMO) (e) and p-IM (LUMO) (f)
MoleculeEHOMO/ eVELUMO / eVΔE / eVβ / eVγ / eVs / eV-1ΔN
IM-5.1691.0226.1912.0743.0960.3230.796
p-IM-6.4640.0886.5523.1883.2760.3050.582
Table 4  Quantum chemical structural parameters of IM molecule
1 Finšgar M, Jackson J. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review [J]. Corros. Sci., 2014, 86: 17
2 Song S F, Guo Y Y. The research status and progress of imidazoline inhibitors [J]. Guangdong Chem. Ind., 2016, 43(22): 91
宋绍富, 郭银银. 咪唑啉类缓蚀剂的研究现状及进展 [J]. 广东化工, 2016, 43(22): 91
3 Zhang K G, Xu B, Yang W Z, et al. Halogen-substituted imidazoline derivatives as corrosion inhibitors for mild steel in hydrochloric acid solution [J]. Corros. Sci., 2015, 90: 284
4 Zhao J M, Zhao Q F, Jiang R J. Relationship between structure of imidazoline derivates with corrosion inhibition performance in CO2/H2S environment [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 142
赵景茂, 赵起锋, 姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究 [J]. 中国腐蚀与防护学报, 2017, 37: 142
5 Zhang C, Duan H B, Zhao J M. Synergistic inhibition effect of imidazoline derivative and L-cysteine on carbon steel corrosion in a CO2-saturated brine solution [J]. Corros. Sci., 2016, 112: 160
6 Lu Y, Zhang C, Wang W, et al. Study of the synergistic effect between corrosion inhibitors by using fractional free volume [J]. Chem. Res. Chin. Univ., 2019, 35: 1046
7 Li Y A, Xu N, Guo X P, et al. Inhibition effect of imidazoline inhibitor on the crevice corrosion of N80 carbon steel in the CO2-saturated NaCl solution containing acetic acid [J]. Corros. Sci., 2017, 126: 127
8 Solomon M M, Umoren S A, Quraishi M A, et al. Effect of akyl chain length, flow, and temperature on the corrosion inhibition of carbon steel in a simulated acidizing environment by an imidazoline-based inhibitor [J]. J. Petrol. Sci. Eng., 2020, 187: 106801
9 Obot I B, Macdonald D D, Gasem Z M. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview [J]. Corros. Sci., 2015, 99: 1
10 Hu S Q, Hu J C, Fan C C, et al. Theoretical and experimental study of corrosion inhibition performance of new imidazoline corrosion inhibitors [J]. Acta Chim. Sin., 2010, 68: 2051
胡松青, 胡建春, 范成成等. 新型咪唑啉缓蚀剂缓蚀性能的理论与实验研究 [J]. 化学学报, 2010, 68: 2051
11 Fan Z, Liu Z, Jing X Y, et al. Prediction of corrosion inhibition efficiency of imidazoline derivatives using fuzzy artificial neural network based on quantum chemical characteristics [J]. Chem. Ind. Eng. Prog., 2019, 38: 1961
范峥, 刘钊, 井晓燕等. 利用量子化学特征的模糊人工神经网络预测咪唑啉衍生物缓蚀效率 [J]. 化工进展, 2019, 38: 1961
12 Zhao J G, Zhang Y. Corrosion behavior of metallic aluminium in trichloroacetic acid [J]. Corros. Sci. Prot. Technol., 2010, 22: 184
赵建国, 张云. 金属铝在TCA溶液中的腐蚀 [J]. 腐蚀科学与防护技术, 2010, 22: 184
13 Sampat S S, Vora J C. Corrosion inhibition of 3s aluminium in trichloroacetic acid by methyl pyridines [J]. Corros. Sci., 1974, 14: 591
14 Desai P S, Vashi R T. Inhibitive efficiency of sulphathiazole for aluminum corrosion in trichloroacetic acid [J]. Anti-Corros. Meth. Mater., 2011, 58: 70
15 Ebenso E E, Okafor P C, Ekpe U J. Studies on the inhibition of aluminium corrosion by 2-acetylphenothiazine in chloroacetic acids [J]. Anti-Corros. Meth. Mater., 2003, 50: 414
16 Becke A D. A multicenter numerical integration scheme for polyatomic molecules [J]. J. Chem. Phys., 1988, 88: 2547
17 Lee C, Yang W T, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev., 1988, 37B: 785
18 Klamt A, Schüürmann G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient [J]. J. Chem. Soc., Perkin Trans., 1993, 2: 799
19 Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. solids. [J]. J. Am. Chem. Soc., 1916, 38: 2221
20 Mu G N, Li X H, Qu Q, et al. Synergistic effect on corrosion inhibition by cerium (IV) ion and sodium molybdate for cold rolled steel in hydrochloric acid solution [J]. Acta Chim. Sin., 2004, 62: 2386
木冠南, 李向红, 屈庆等. 稀土铈(IV)离子和钼酸钠在盐酸溶液中对冷轧钢的缓蚀协同效应 [J]. 化学学报, 2004, 62: 2386
21 Fernandes C M, Alvarez L X, Dos Santos N E, et al. Green synthesis of 1-benzyl-4-phenyl-1H-1,2,3-triazole, its application as corrosion inhibitor for mild steel in acidic medium and new approach of classical electrochemical analyses [J]. Corros. Sci., 2019, 149: 185
22 Zhou X Y, Zhou Y. The unit problem in the thermodynamic calculation of adsorption using the Langmuir equation [J]. Chem. Eng. Comm., 2014, 201: 1459
23 Zhang K, Lu J M, Li J, et al. A novel approach for copper protection: UV light triggered preparation ofthe click-assembled film on copper surface [J]. Chem. Eng. J., 2020, 385: 123406
24 Cao C. On electrochemical techniques for interface inhibitor research [J]. Corros. Sci., 1996, 38: 2073
25 Deng S D, Li X H, Fu H. Nitrotetrazolium blue chloride as a novel corrosion inhibitor of steel in sulfuric acid solution [J]. Corros. Sci., 2010, 52: 3840
26 Li X H, Deng S D, Li N, et al. Inhibition effect of bamboo leaves extract on cold rolled steel in Cl3CCOOH solution [J]. J. Mater. Res. Technol., 2017, 6: 158
27 Amin M A, Abd El-Rehim S S, El-Sherbini E E F, et al. The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid: Part I. Weight loss, polarization, EIS, PZC, EDX and SEM studies [J]. Electrochim. Acta, 2007, 52: 3588
28 Lashkari M, Arshadi M R. DFT studies of pyridine corrosion inhibitors in electrical double layer: solvent, substrate, and electric field effects [J]. Chem. Phys., 2004, 299: 131
29 Ghailane T, Balkhmima R A, Ghailane R, et al. Experimental and theoretical studies for mild steel corrosion inhibition in 1 M HCl by two new benzothiazine derivatives [J]. Corros. Sci., 2013, 76: 317
30 De Assunção Araújo Pereisa S S, Pêgas M M, Fernández T L, et al. Inhibitory action of aqueous garlic peel extract on the corrosion of carbon steel in HCl solution [J]. Corros. Sci., 2012, 65: 360
31 Singh M M, Gupta A. Corrosion behaviour of mild steel in formic acid solutions [J]. Mater. Chem. Phys., 1996, 46: 15
32 Tran T, Brown B, Nešić S, et al. Investigation of the electrochemical mechanisms for acetic acid corrosion of mild steel [J]. Corrosion, 2014, 70: 223
33 Gong M. Metallic Corrosion Theory and Corrosion Control [J]. Beijing: Chemical Industry Press, 2009: 59
龚敏. 金属腐蚀理论与腐蚀控制 [M]. 北京: 化学工业出版社, 2009: 59
[1] LIN Zhaohui, MING Nanxi, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[2] LI Ruitao, XIAO Bo, LIU Xiao, ZHU Zhongliang, CHENG Yi, LI Junwan, CAO Jieyu, DING Haimin, ZHANG Naiqiang. Corrosion Behavior of Low Alloy Heat-resistant Steel T23 in High-temperature Supercritical Carbon Dioxide[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
[3] GE Fangyu, HUANG Feng, YUAN Wei, XIAO Hu, LIU Jing. Effect of Cyclic Stress Frequency on Corrosion Electrochem-ical Behavior of MS X65 Pipeline Steel in H2S Containing Medium[J]. 中国腐蚀与防护学报, 2021, 41(2): 187-194.
[4] CAO Jingyi, FANG Zhigang, LI Liang, FENG Yafei, WANG Xingqi, SHOU Haiming, YANG Yange, CHU Guangzhe, YIN Wenchang. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[5] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[6] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[7] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[8] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[9] ZHANG Huiyun, ZHENG Liuwei, MENG Xianming, LIANG Wei. Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement Sensitivity of Cr15 Ferritic and 304 Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[10] ZHANG Teng, LIU Jing, HUANG Feng, HU Qian, GE Fangyu. Effect of Alternating Stress Frequency on Corrosion Electrochemical Behavior of E690 Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[11] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[12] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[13] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[14] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[15] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
No Suggested Reading articles found!