Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (6): 585-591    DOI: 10.11902/1005.4537.2019.087
Current Issue | Archive | Adv Search |
Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition
BAO Ren1, ZHOU Genshu1(), LI Hongwei2
1. State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
2. Equipment Maintenance Center, Shenhua Shenmu Coal Group Company, Shenmu 719315, China
Download:  HTML  PDF(6205KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Aiming at the proposed potentiostatic pulse electrodeposition of Cu-Sn alloy, the influence of process parameters on the composition, grain size and corrosion resistance of prepared coatings is studied. The morphology, grain size, chemical composition and corrosion behavior of the Cu-Sn coatings electrodeposited by potentiostatic pulse technology or constant-current pulse technology are characterized by means of scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS) and electrochemical workstation. It is found that potentiostatic pulse process of Cu-Sn electroplating with the duty ratio of 33% and potential of 3 V could reduce the dissolution probability of the plating layer and maintained the complex ion migration and deposition driving force, so that the high-tin bronze coating can be obtained on parts of different size. The grain size of the coating on the part with surface area 78.5 mm2 is less than 100 nm. Under the same initial conditions, the electrodeposition rate of the potentiostatic pulse technology is faster than that of the constant current pulse technology, besides the plated alloy presents much better composition uniformity and the formed coating possesses only few of pores and crystallite clusters, therefore the coating exhibits corrosion resistance 2 times higher than that made by constant-current pulse. Compared with the constant current pulse technology, the potentiostatic pulse electrodeposition is beneficial to improve the quality and corrosion resistance of copper-tin plating and which may facilitate the introduction of processing automation or composition control for complex parts as well.

Key words:  high-tin bronze      potentiostatic pulse      constant-current pulse      electrodeposition      corrosion resistance     
Received:  20 June 2019     
ZTFLH:  TQ153.2  
Fund: Science and Technology Innovation Program of Xi'an(201805064ZD15CG48)
Corresponding Authors:  ZHOU Genshu     E-mail:  zhougs@xjtu.edu.cn

Cite this article: 

BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 585-591.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.087     OR     https://www.jcscp.org/EN/Y2020/V40/I6/585

Fig.1  Processes diagrams of constant-current (a) and potentiostatic (b) pulse electrodepositions
Fig.2  SEM images of the coatings electrodeposited on sample A (a, b) and sample B (c, d) in the modes of constant-current pulse (a, c) and potentiostatic pulse (b, d)
Fig.3  EDS analysis results of the coatings electrodeposited on sample A (a, b) and sample B (c, d) in the modes of constant-current pulse (a, c) and potentiostatic pulse (b, d)
SampleMass of Sn in the coating / mgMass of copper in the coating / mgPercent of Sn in the coating / %
Constant-current pulseS=78.5 mm21.220.9655.9
S=270 mm22.864.7737.5
Potentiostatic pulseS=78.5 mm22.252.1151.7
S=270 mm27.038.2346.1
Table 1  Ccontents of Sn in the coatings electrodeposited on two samples in two pulse modes
SampleThickness of the first point / μmThickness of the second point / μmThickness of the third point / μmAverage thickness / μm
Constant-current pulseS=78.5 mm26.16.46.26.2
S=270 mm26.96.35.66.3
Potentiostatic pulseS=78.5 mm210.710.311.210.7
S=270 mm211.112.311.811.7
Table 2  Thicknesses of the coatings electrodeposited on two samples with different cross-sectional areas in two pulse modes
Fig.4  Cross-sectional images of the coatings electrode-posited on sample B in the modes of constant-current pulse (a) and potentiostatic pulse (b)
Fig.5  Bode plots of sample B without and with the coatings deposited in different pulse modes
Fig.6  Bode plots of sample A without and with the coatings electrodeposited in different pulse modes
Fig.7  Open circuit potential of the coating electrodeposited by potentiostatic pulse
[1] Zheng L, Luo S, Li Z H, et al. Preparation of new copper-tin alloy electroplating additives [J]. Surf. Technol., 2018, 47(9): 214
(郑丽, 罗松, 李祉豪等. 新型铜锡合金电镀添加剂的制备 [J]. 表面技术, 2018, 47(9): 214)
[2] Li M. Determination of pyrophosphate in copper-tin alloy plating bath [J]. Surf. Technol., 1991, 3(1): 48, 47
(李明. 铜锡合金电镀液中焦磷酸根的测定 [J]. 表面技术, 1991, 3(1): 48, 47)
[3] Correia A N, Façanha M X, De Lima-Neto P. Cu-Sn coatings obtained from pyrophosphate-based electrolytes [J]. Surf. Coat. Technol., 2007, 201: 7216
[4] Yamamoto T, Nohira T, Hagiwara R, et al. Improved cyclability of Sn-Cu film electrode for sodium secondary battery using inorganic ionic liquid electrolyte [J]. Electrochim. Acta, 2014, 135: 60
[5] Guo C W. Process for electroplating white copper-tin alloy with electroplated zinc-nickel alloy coating as a bottom layer [J]. Electroplat. Plat., 2018, 37: 536
(郭崇武. 以镀酸性锌镍合金作为底层的电镀白铜锡工艺 [J]. 电镀与涂饰, 2018, 37: 536)
[6] Jiang T D, Zeng Z O, Xu J L, et al. Process of white copper-tin alloy electroplating with pyrophosphate bath [J]. Electroplat. Plat., 2011, 30(1): 1
(姜腾达, 曾振欧, 徐金来等. 焦磷酸盐溶液体系电镀白铜锡工艺 [J]. 电镀与涂饰, 2011, 30(1): 1)
[7] Carlos I A, Bidoia E D, Pallone E M J A, et al. Effect of tartrate content on aging and deposition condition of copper-tin electrodeposits from a non-cyanide acid bath [J]. Surf. Coat. Technol., 2002, 157: 14
doi: 10.1016/S0257-8972(02)00139-1
[8] Stichleutner S, Lak G B, Kuzmann E, et al. Mössbauer and XRD study of pulse plated Sn-Fe, Sn-Ni and Sn-Ni-Fe electrodeposited alloys [J]. Hyperfine Interact., 2014, 226: 15
[9] Syrett B C, Parkins R N. The effect of Sn and As on the stress corrosion of Cu-Zn alloys [J]. Corros. Sci., 1970, 10: 197
[10] Wu K. Study on pulse electrodeposition and properties of mutiple Cu-Sn based composite coatings [D]. Harbin: Harbin Engineering University, 2016
(吴珂. 脉冲电沉积多元Cu-Sn基复合镀层的制备及性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2016)
[11] Li F Y, Cheng X B, Yu D R. Effect of electroplating parameters on hydrogen permeation of electroplated copper-Tin coatings [J]. Mater. Prot., 2013, 46(5): 36
(李福永, 程相榜, 于德润. 电镀工艺对铜锡合金镀层渗氢的影响 [J]. 材料保护, 2013, 46(5): 36)
[12] Wu L, Cobley A J. Effect of the use of pulse plating techniques in electrodeposited Sn-Cu coatings for Pb-free, environmentally-friendly applications [A]. 231th ECS Meeting [C]. New Orleans: 2017
[13] TechnologyGroup, 519 Factory, State Administration of Telecommunications. Application of potentiostat in electroplating production [J]. Mater. Prot., 1976, 4(1): 26
(电信总局519厂工艺组. 恒电位仪在电镀生产中的应用 [J]. 材料保护,1976, 4(1): 26)
[14] Gong Z Q, Deng S H, Chen W M. Pulse electrodeposition of nanocrystalline nickel-iron-chromium alloy (Ⅰ)-Techniques of electrodeposition [J]. Chin. J. Nonferrous Met., 2003, 6: 511
(龚竹青, 邓姝皓, 陈文汨. 脉冲电沉积纳米晶镍-铁-铬合金 (Ⅰ)-电沉积工艺 [J]. 中国有色金属学报, 2003, 6: 511)
[15] Jin B K, Wang S J, Zhang Z P. Fabrication and characterization of Ag nanoparticles modified electrode [J]. J. Anhui Univ. (Nat. Sci. Ed.), 2005, 29(5): 71
(金葆康, 王世君, 张自品. 纳米银修饰电极的制备及表征 [J]. 安徽大学学报 (自然科学版), 2005, 29(5): 71)
[16] Lu C M. Study on the pore size and electrochemical properties of three-dimensional network structure Mn-based oxide [D]. Nanchang: Nanchang Hangkong University, 2015
(卢春民. 三维纳米网状Mn基氧化物的孔径及其电化学性能研究 [D]. 南昌: 南昌航空大学, 2015)
[17] Zheng X C, Kang J F, Li T, et al. Electrochemical deposition and magnetic properties of Co-Ni alloys [J]. J. Xinyang Normal Univ. (Nat. Sci. Ed.), 2011, 24: 380
(郑修成, 康进峰, 李腾等. 电化学沉积法制备Co-Ni合金及其磁性能研究 [J]. 信阳师范学院学报 (自然科学版), 2011, 24: 380)
[18] Chu R B, Guan C L, Chu C J. Process for electroplating of copper in pyrophosphate bath [J]. Mater. Prot., 2006, 39(10): 58
(储荣邦, 关春丽, 储春娟. 焦磷酸盐镀铜生产工艺 (I) [J]. 材料保护, 2006, 39(10): 58)
[19] Feng B. Process and kinetics of low-tin copper-tin alloy electroplating from pyrophosphate aqueous electrolyte [D]. Guangzhou: South China University of Technology, 2013
(冯冰. 焦磷酸盐溶液体系滚镀低锡铜—锡合金 (黄青铜) 工艺及电沉积动力学 [D]. 广州: 华南理工大学, 2013)
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[4] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[5] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[6] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[7] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[8] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[9] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[10] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[11] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[12] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[13] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[14] Delin LAI,Gang KONG,Chunshan CHE. Effect of Sodium Silicate Sealing on Corrosion Resistance of TiO2Conversion Film on Hot-dip Galvanized[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
[15] Ming LIU,Xuequn CHENG,Xiaogang LI,Tianjian LU. Corrosion Resistance Mechanisms of Passive Films Formed on Low Alloy Rebar Steels in Liquor of Cement Extract[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
No Suggested Reading articles found!