Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (4): 367-372    DOI: 10.11902/1005.4537.2019.089
Current Issue | Archive | Adv Search |
Preparation and Properties of Ceramics Composed of Nano-Al2O3 and Polysiloxane-polyborosilicate-TiB2 Modified Polysilborazane as High Temperature Adhesive for SiC Based Ceramics
WANG Haiwei1, CHANG Sen2,3(), LUAN Xin'gang3, SONG Xuemei2, WANG Zhen2, LI Yanzhang2, CHEN Jianli2, ZHANG Jirong2, HAN Ming2, QIU Dangui2
1. CNNP Xiapu Nuclear Power Co. Ltd. , Xiapu 355100, China
2. China Institute for Radiation Protection, Taiyuan 030006, China
3. Science and Technology on Thermo Structural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
Download:  HTML  PDF(4959KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to improve the thermal stability and adhesion strength of PSO (polysiloxane)-PBSZ (polyborosilicate)-TiB2 modified PSNB (polysilborazane) (labeled as PPPT), PSNB was modified by Al2O3-PSO-PBSZ-TiB2 (denoted as PPPTA), and it was used for joining SiC ceramic discs. The microstructure and phase composition of the modified adhesive were analyzed by SEM and XRD. The effect of pyrolysis temperature and addition amount of nano-Al2O3 on the microstructure and adhesion strength for the bonding pair of SiBCN ceramics were investigated. The strengthening and toughening mechanism of nano-Al2O3 to the bonding SiBCN ceramics was revealed. After curing in air at 120 ℃ for 2 h and then pyrolysis in air at 1000 ℃ for 2 h, the room temperature adhesion strength of PPPT and PPPTA is up to 11.23 and 15.91 MPa, respectively, and more importantly, the high temperature (in air at 800 ℃) shear strength reaches 10.4 and 12.1 MPa, respectively. The analysis shows that nano-Al2O3 can effectively suppress the volume shrinkage of the adhesive layer and inhibit the volatilization of the glass phase at high temperature, thereby significantly improving the adhesion strength.

Key words:  polyborosilazane      nano-Al2O3      glass      high temperature strength     
Received:  21 June 2019     
ZTFLH:  TQ174  
Fund: National Key R&D Program of China(2017YFB0703200);State Key Laboratory of Solidification Processing (NWPU), China(135-QP-2015);Fundamental Research Funds for the Central Universities(3102017zy058)
Corresponding Authors:  CHANG Sen     E-mail:  changsen0869@163.com

Cite this article: 

WANG Haiwei, CHANG Sen, LUAN Xin'gang, SONG Xuemei, WANG Zhen, LI Yanzhang, CHEN Jianli, ZHANG Jirong, HAN Ming, QIU Dangui. Preparation and Properties of Ceramics Composed of Nano-Al2O3 and Polysiloxane-polyborosilicate-TiB2 Modified Polysilborazane as High Temperature Adhesive for SiC Based Ceramics. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 367-372.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.089     OR     https://www.jcscp.org/EN/Y2020/V40/I4/367

Fig.1  Molecular structures of PSNB (a), PSO (b) and PBSZ (c)[18]
Fig.2  Adhesion strengths of PPPT and PPPTA at room temperature and 800 ℃
Fig.3  Cross-sectional micrographs of the joints of PPPT and PPPTA after pyrolyzed at 1000 ℃ in air for 2 h
Fig.4  Room temperature fracture morphologies of PPPT (a, b) and PPPTA (c, d) after pyrolysis at 1000 ℃ (a, c) and 1200 ℃ (b, d) in air for 2 h
Fig.5  High temperature fracture morphologies of PPPT (a, b) and PPPTA (c, d) after pyrolysis at 1000 ℃ (a, c) and 1200 ℃ (b, d) in air for 2 h
Fig.6  XRD patterns of the joints of PPPT (a) and PPPTA (b) after pyrolyzed at 1000 and 1200 ℃ in air for 2 h
Fig.7  Schematic illustration of nano-Al2O3 reinforced SiBCN ceramic
[1] Chai W, Deng Q F, Wang Y Y, et al. Application status of SiC ceramics [J]. Light Ind. Mach., 2012, 30(4): 117
(柴威, 邓乾发, 王羽寅等. 碳化硅陶瓷的应用现状 [J]. 轻工机械, 2012, 30(4): 117)
[2] She J H, Jiang D L. Development and application of silicon carbide cerandcs [J]. Ceram. Eng., 1998, 32(3): 3
(佘继红, 江东亮. 碳化硅陶瓷的发展与应用 [J]. 陶瓷工程, 1998, 32(3): 3)
[3] Li Y, Huang F P, Liang Z H. The application and performance for SiC-ceramics [J]. Ceramics, 2007, (5): 36
(李缨, 黄凤萍, 梁振海. 碳化硅陶瓷的性能与应用 [J]. 陶瓷, 2007, (5): 36)
[4] Chen M H, Xu J. Application of SiC ceramics to manufacture of spacecraft combustion chamber [J]. J. Nanjing Univ. Aeronaut. Astronaut., 2000, 32(2): 132
(陈明和, 徐洁. SiC陶瓷在航天器高温结构件研制中的应用 [J]. 南京航空航天大学学报, 2000, 32(2): 132)
[5] He B L, Sun J. Progress and application of carbon fibers reinforced silicon carbide ceramic matrix composites [J]. Bull. Chin. Ceram. Soc., 2009, 28: 1197
(何柏林, 孙佳. 碳纤维增强碳化硅陶瓷基复合材料的研究进展及应用 [J]. 硅酸盐通报, 2009, 28: 1197)
[6] Chen Y X, Wang R C, Wang X F, et al. Research and development of porous silicon carbide ceramics [J]. Chin. J. Nonferrous Met., 2015, 25: 2146
(陈以心, 王日初, 王小锋等. 多孔SiC陶瓷的研究进展 [J]. 中国有色金属学报, 2015, 25: 2146)
[7] Zhang L T, Cheng L F, Xu Y D. Progress in research work of new CMC-SiC [J]. Aeronaut. Manuf. Technol., 2003, (1): 24
(张立同, 成来飞, 徐永东. 新型碳化硅陶瓷基复合材料的研究进展 [J]. 航空制造技术, 2003, (1): 24)
[8] Wang X. The research between iron fibre-oxide and properties relationship in composite material [D]. Wuhan: Wuhan University of Technology, 2008
(汪侠. 复合材料中铁纤维的氧化与性能的关系研究 [D]. 武汉: 武汉理工大学, 2008)
[9] Zhang J D. Joining of ZrO2/Al2O3 ceramics by SiC oxidizing method [D]. Tianjing: Tianjin University, 2007
(张君娣. ZrO2-Al2O3陶瓷的SiC氧化法连接 [D]. 天津: 天津大学, 2007)
[10] Qin X M. Brazing process and mechanism of ZrB2-SiC composite ceramic using Zr-Ni-based filler [D]. Harbin: Harbin Institute of Technology, 2016
(秦晓蒙. Zr-Ni基钎料钎焊ZrB2-SiC复合陶瓷的连接工艺及机理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016)
[11] Han M. Study on the connection of ceramic membrane tube with metal material [D]. Guiyang: Guizhou University, 2008
(韩敏. 陶瓷膜管与金属材料连接的研究 [D]. 贵阳: 贵州大学, 2008)
[12] Zhao Y N. Study on microwave joining of ZTM ceramics/fiber braids and its elastic behaviour [D]. Tianjin: Tianjin University, 2012
(赵英娜. ZTM陶瓷/纤维编织体微波连接及其弹性行为研究 [D]. 天津: 天津大学, 2012)
[13] Colombo P, Mera G, Riedel R, et al. Polymer‐derived ceramics: 40 years of research and innovation in advanced ceramics [J]. J. Am. Ceram. Soc., 2010, 93: 1805
[14] Yajima S, Okamura K, Shishido T, et al. Joining of SiC to SiC using polyborosiloxane [J]. Am. Ceram. Soc. Bull., 1981, 60: 253
[15] Pippel E, Woltersdorf J, Colombo P. Structure and composition of interlayers in joints between SiC bodies [J]. J. Eur. Ceram. Soc., 1997, 17: 1259
[16] Colombo P, Sglavo V, Pippel E. Joining of reaction-bonded silicon carbide using a preceramic polymer [J]. J. Mater. Sci., 1998, 33: 2405
[17] Luan X G, Wang J Q, Zou Y, et al. A novel high temperature adhesive for bonding Al2O3 ceramic [J]. Mater. Sci. Eng., 2016, A651: 517
[18] Luan X G, Chang S, Riedel R, et al. An air stable high temperature adhesive from modified SiBCN precursor synthesized via polymer-derived-ceramic route [J]. Ceram. Int., 2018, 44: 8476
[19] Luan X G, Chang S, Riedel R, et al. The improvement in thermal and mechanical properties of TiB2 modified adhesive through the polymer-derived-ceramic route [J]. Ceram. Int., 2018, 44:19505
[20] Luan X G, Chang S, Yu R, et al. Effect of PSO and TiB2 content on the high temperature adhesion strength of SiBCNO ceramic [J]. Ceram. Int., 2018, 45: 9515
[21] Ren Z Y. Research on preparation and performances of modified high-temperature adhesive [D]. Beijing: Beijing University of Chemical Technology, 2015
(任张毓. 改性耐高温粘接剂的制备与性能研究 [D]. 北京: 北京化工大学, 2015)
[22] Rao Z L. Preparation and performance of ceramizable heat-resistant and ablation-resistance organic silicon adhesive [D]. Wuhan: Wuhan University of Technology, 2014
(饶志龙. 耐高温抗烧蚀可陶瓷化有机硅胶粘剂的制备与性能研究 [D]. 武汉: 武汉理工大学, 2014)
[1] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[2] Zhiying ZHANG, Jianan TANG, Jie YU, Xudong WANG, Luochao HUANG, Junwen ZHOU, Hao TANG, Jikang ZHANG, Yatao CHEN, Dongpeng CHENG. Corrosion Behavior of Cu-based Metallic Glass Composites in NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(5): 478-486.
[3] Yong HUANG, Shanlin WANG, Shuaixing WANG, Yubing GONG, Liming KE. Corrosion Resistance of Fe-based Bulk Metallic Glass with Sulfide Inclusions in HCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.
[4] Yanan NIE,Hao SHEN,Kunpeng GU,Chengqi WANG. Seawater Corrosion Resistance and Service Life Prediction of Glass Fiber Reinforced Plastic Composites[J]. 中国腐蚀与防护学报, 2016, 36(4): 357-362.
[5] HAO Yongsheng, LIU Fuchun, SHI Hongwei, HAN EnHou. ANTICORROSION PROPERTIES OF EPOXY/GLASS FIBER COATINGS[J]. 中国腐蚀与防护学报, 2011, 31(6): 426-430.
[6] PENG Chengzhang, ZHU Lingling. INFLUENCE OF HEAT TREATMENT ON MICROSTRUCTURE AND CORROSION RESISTANCE OF Ni-P/NANO-Al2O3 COMPOSITE COATING[J]. 中国腐蚀与防护学报, 2011, 31(3): 179-183.
[7] Weiwei Peng. PREVENTION OF STRESS CORROSION CRACKING IN WELD JOINT OF TYPE 304 STAINLESS STEEL BY GLASS-BEAD PEENING[J]. 中国腐蚀与防护学报, 2005, 25(3): 152-156 .
No Suggested Reading articles found!