Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (1): 51-56    DOI: 10.11902/1005.4537.2019.216
Current Issue | Archive | Adv Search |
Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel
WU Dongcai,HAN Peide()
Key Laboratory of Interface Science and Engineering in Advanced Materials, College of Materials Science and Engineering,Taiyuan University of Technology, Taiyan 030024, China
Download:  HTML  PDF(3313KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and corrosion resistance of SAF2304 duplex stainless steel after aging treatment for 2 h at 600, 650, 700, 750 and 800 ℃, as well as at 700 ℃ for 0.25, 0.5,1, 2, 3, 4 and 5 h respectively were characterized by means of optical microscopy (OM), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurement. The results showed that with the increasing aging temperature, the amount of secondary phase precipitated at grain-boundaries of ferrite/austenite increased and the maximum value of which emerged at 700 ℃ sharply, correspondingly the steel after solution treated at 1050 ℃ for 1 h and aged at 700 ℃ for 2 h showed the worst corrosion resistance. Therefore, the SAF2304 duplex stainless steel is sensitive to the aging treatment at 700 ℃ in terms of the secondary phase precipitation and corrosion resistance. For the steel aged at 800 ℃, the precipitated phase was rarely observed, and its corrosion resistance was enhanced. Furthermore, with the increasing time for the aging at 700 ℃, precipitates of secondary phase increased sharply, while the formed passivation film became poor and poor in compactness and uniformity, so as the corrosion resistance of the steel.

Key words:  duplex stainless steel 2304      precipitated phase      aging treatment      corrosion resistance      sensitive temperature     
Received:  05 July 2019     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51371123);Univesty Doctoral subject Key Doctoral Mentor Foundation Projects(2013140211003);Natural Science Foundation of Shanxi(2014011002)
Corresponding Authors:  Peide HAN     E-mail:  hanpeide@126.com

Cite this article: 

WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel. Journal of Chinese Society for Corrosion and protection, 2020, 40(1): 51-56.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.216     OR     https://www.jcscp.org/EN/Y2020/V40/I1/51

Fig.1  OM images of the solid solution treated specimen at 1050 ℃ for 1 h (a) and specimens annealed after solid solution treated at 600 ℃/2 h (b), 650 ℃/2 h (c), 700 ℃/2 h (d), 750 ℃/2 h (e) and 800 ℃/2 h (f)
Fig.2  Anodic polarization curves of SAF2304 steel with different aging temperatures in 3.5%NaCl solution
Fig.3  OM images of the annealed specimens after solid solution treated at 0.25 h (a), 0.5 h (b), 1 h (c), 2 h (d), 3 h (e), 4 h (f) and 5 h (g)
Fig.4  Anodic polarization curves of SAF2304 steel with different aging times at 700 ℃ in 3.5%NaCl solution
Fig.5  Electrochemical impedance spectroscopy curves of SAF2304 steel with different aging times at 700 ℃ in 3.5%NaCl solution
Fig.6  Equivalent circuit diagram from electrochemical impedance spectroscopy curves of the SAF2304 steel with different aging times at 700 ℃ in 3.5% NaCl solution
[1] Oredsson J, Bernhardsson S. Performance of high alloy austenitic and duplex stainless steels in sour gas and oil environments [J]. Mater. Perform., 1983, 22: 35
[2] Sun W S. Progress in duplex stainless steel and its application in industry [J]. Ord. Mater. Sci. Eng., 2001, 24(4): 49
[2] (孙文山. 双相不锈钢的进展及其在工业中的应用 [J]. 兵器材料科学与工程, 2001, 24(4): 49)
[3] Gao W, Luo J M, Yang J J. Research progress and application of double phase stainless steel [J]. Ord. Mater. Sci. Eng., 2005, 28(3): 61
[3] (高娃, 罗建民, 杨建君. 双相不锈钢的研究进展及其应用 [J]. 兵器材料科学与工程, 2005, 28(3): 61)
[4] Yao L. The effect and action mechanism of A1 element on microstructure and properties of 17-7PH、2205 stainless steel [D]. Lanzhou: Lanzhou University of Technology, 2013
[4] (姚亮. A1元素对17-7PH、2205不锈钢组织、性能的影响及作用机制 [D]. 兰州: 兰州理工大学, 2013)
[5] Alvarez-Armas I. Duplex stainless steels: Brief history and some recent alloys [J]. Recent Pat. Mech. Eng., 2008, 1: 51
[6] Bin Y H, Li P F, Li Z Z, et al. Precipitation behaviour of σ-phase and its effects on impact toughness of duplex stainless steel [J]. Hot Work. Technol., 2013, 42(8): 155
[6] (宾远红, 李培芬, 李志铮等. 双相不锈钢σ相析出行为及对冲击性能的影响 [J]. 热加工工艺, 2013, 42(8): 155)
[7] Wang Y S, Li H F, Wang J, et al. Effects of Aging on σ-phase precipitation of 2205 duplex stainless steel [J]. Hot Work. Technol., 2011, 40(8): 172
[7] (王院生, 李海丰, 王均等. 时效对2205双相不锈钢σ析出相的影响 [J]. 热加工工艺, 2011, 40(8): 172)
[8] Jiang Y M, Sun T, Li J, et al. Evaluation of pitting behavior on solution treated duplex stainless steel UNS S31803 [J]. J. Mater. Sci. Technol., 2014, 30: 179
[9] Jeon S H, Kim H J, Park Y S. Effects of inclusions on the precipitation of chi phases and intergranular corrosion resistance of hyper duplex stainless steel [J]. Corros. Sci., 2014, 87: 1
[10] Miao L D, Zhang Y, Wang G D, et al. Qualitative and quantitative analysis of precipitate phases for 750 ℃ aged 2205 duplex stainless steel [J]. Metall. Analy., 2010, 30(9): 6
[10] (缪乐德, 张毅, 王国栋等. 对750 ℃不同热处理时间2205双相不锈钢析出相的定性定量分析 [J]. 冶金分析, 2010, 30(9): 6)
[11] Liu J, Li R, Fan G W, et al. Pitting corrosion behavior of simulated heat affected zone in SAF2507 super duplex stainless steel [J]. Trans. Mater. Heat Treat., 2015, 36(10): 77
[11] (刘洁, 李睿, 范光伟等. 超级双相不锈钢SAF2507焊接热模拟组织的耐点蚀性 [J]. 材料热处理学报, 2015, 36(10): 77)
[12] Liu X, Ma L F, Li Y G. Effect of La and Ce on corrosion resistance of duplex stainless steel [J]. Trans. Mater. Heat Treat., 2016, 37(1): 112
[12] (刘晓, 马利飞, 李运刚. 稀土镧和铈对双相不锈钢耐腐蚀性能的影响 [J]. 材料热处理学报, 2016, 37(1): 112)
[13] Luo S J, Zheng X X. Effects of sensitizing treatment on microstructure and mechanical properties of 2205 duplex stainless steel [J]. J. Mater. Eng., 2011, 39(5): 76
[13] (雒设计, 郑新侠. 敏化处理对2205双相不锈钢组织与力学性能的影响 [J]. 材料工程, 2011, 39(5): 76)
[14] Evangelista E, McQueen H J, Niewczas M, et al. Hot workability of 2304 and 2205 duplex stainless steels [J]. Can. Metall. Quart., 2004, 43: 339
[15] Straffelini G, Baldo S, Calliari I, et al. Effect of aging on the fracture behavior of lean duplex stainless steel [J]. Metall. Mater. Trans., 2009, 40A: 2616
[16] Zhang Z Y, Han D, Jiang Y M, et al. Microstructural evolution and pitting resistance of annealed lean duplex stainless steel UNS S32304 [J]. Nucl. Eng. Des., 2012, 243: 56
[17] Li Z, Xu J L, Li X Y, et al. Preparation of manganese dioxide for electrodes of supercapacitors based on duplex stainless steel [J]. Acta Phys. -Chim. Sin., 2011, 27: 1424
[17] (李钊, 徐菊良, 李旭晏等. 基于双相不锈钢制备超级电容器电极材料MnO2 [J]. 物理化学学报, 2011, 27: 1424)
[18] Wang C Q, Ding Y, Ma L Q, et al. Corrosion resisting action of 304 and 2304 stainless steel in chloride medium [J]. Pressure Vessel Technol., 2007, 24(5): 1
[18] (王常青, 丁毅, 马立群等. 304和2304不锈钢在Cl介质中的耐蚀行为 [J]. 压力容器, 2007, 24(5): 1)
[19] Li X L, Cai Q W, Zhao Y T, et al. Effect of Ti and Ti-V microalloyed on precipitation behaviors, microstructure and properties of low carbon bainitic steel [J]. J. Mater. Eng., 2015, 43(6): 52
[19] (李晓林, 蔡庆伍, 赵运堂等. Ti和Ti-V微合金化低碳贝氏体钢组织性能及析出行为的研究 [J]. 材料工程, 2015, 43(6): 52)
[20] Wu J, Zhang H H. Formation and growth rules of participate in niobium micro-alloyed steel [J]. Heat Treat. Met., 2011, 36(4): 4
[20] (吴静, 张恒华. 铌微合金钢析出相的形成与长大规律 [J]. 金属热处理, 2011, 36(4): 4)
[21] Han D, Jiang Y M, Deng B, et al. Effect of aging time on electrochemical corrosion behavior of 2101 duplex stainless steel [J]. Acta Metall. Sin., 2009, 45: 919
[21] (韩冬, 蒋益明, 邓博等. 时效时间对2101双相不锈钢电化学腐蚀行为的影响 [J]. 金属学报, 2009, 45: 919)
[22] Fang Y L, Liu Z Y, Wang G D. Effect of isothermal aging on precipitation behavior of lean duplex stainless steel 2101 [J]. J. Iron Steel Res., 2010, 22(6): 21
[22] (方轶琉, 刘振宇, 王国栋. 等温时效对节约型双相不锈钢2101析出行为的影响 [J]. 钢铁研究学报, 2010, 22(6): 21)
[23] Liou H Y, Hsieh R I, Tsai W T. Microstructure and pitting corrosion in simulated heat-affected zones of duplex stainless steels [J]. Mater. Chem. Phys., 2002, 74: 33
[24] Ramirez A J, Lippold J C, Brandi S D. The relationship between chromium nitride and secondary austenite precipitation in duplex stainless steels [J]. Metall. Mater. Trans., 2003, 34A: 1575
[25] Bhattacharya A, Singh P M. Role of microstructure on the corrosion susceptibility of UNS S32101 duplex stainless steel [J]. Corrosion, 2008, 64: 532
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[9] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[10] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[11] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[12] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[13] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[14] Delin LAI,Gang KONG,Chunshan CHE. Effect of Sodium Silicate Sealing on Corrosion Resistance of TiO2Conversion Film on Hot-dip Galvanized[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
[15] Ming LIU,Xuequn CHENG,Xiaogang LI,Tianjian LU. Corrosion Resistance Mechanisms of Passive Films Formed on Low Alloy Rebar Steels in Liquor of Cement Extract[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
No Suggested Reading articles found!