Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (6): 595-603    DOI: 10.11902/1005.4537.2016.181
Orginal Article Current Issue | Archive | Adv Search |
Effect of Zn Addition on Microstructure and Corrosion Property of As-extruded Mg-13Gd-2Cu Alloy
Zhenwei GENG,Daihong XIAO()
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Download:  HTML  PDF(1818KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Zinc addition on microstructure and corrosion property of the as-extruded Mg-13Gd-2Cu alloy were studied using scanning electron microscope (SEM) equipped with energy dispersive spectroscope (EDS), electron microprobe analysis (EMPA), X-ray diffractometer, immersion test and electrochemical measurements. The result show that the Mg-13Gd-2Cu alloy consists mainly of α-Mg, Mg5(GdCu)1 and elemental Gd phase. When 2%(mass fraction) Zn added in the Mg-13Gd-2Cu alloy, a long period stacking order (LPSO) phase Mg12(GdCuZn)1 forms. The presence of the LPSO phase enables the corrosion rate of the alloy to be decreased from 1.51 mm/d to 1.23 mm/d. The results of electrochemical measurements with various scan rate indicate that the free-corrosion potential (Ecorr) shifts positively and the free-corrosion current density (Icorr) decreases about 0.18 mAcm-2 for the Mg-13Gd-2Cu-2Zn alloy. The reduction of Icorr proves that Zn addition can enhance the corrosion resistance of Mg-13Gd-2Cu alloy.

Key words:  rare magnesium alloy      adding Zn      microstructure      LPSO phase      corrosion property     

Cite this article: 

Zhenwei GENG,Daihong XIAO. Effect of Zn Addition on Microstructure and Corrosion Property of As-extruded Mg-13Gd-2Cu Alloy. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 595-603.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.181     OR     https://www.jcscp.org/EN/Y2016/V36/I6/595

Fig.1  SEM images of as-cast Mg-13Gd-2Cu (a) and Mg-13Gd-2Cu-2Zn (b) alloys
Sample Phase Mg Gd Cu Zn
Mg-13Gd-2Cu α-Mg 99.6 0.4 --- ---
Mg5(GdCu)1 85.6 6.5 7.9 ---
Mg-13Gd-2Cu-2Zn α-Mg 99.2 0.4 --- 0.4
Mg5(GdCuZn)1 85.1 5.0 6.3 3.6
LPSO 92.6 4.3 0.8 2.3
Segregation region 63.8 10.3 12.0 13.9
Table 1  Chemical composition analysises of different phases in two as-cast alloys by EPMA (atomic fraction / %)
Fig.2  XRD patterns of the as-cast Mg-13Gd-2Cu and Mg-13Gd-2Cu-2Zn alloys
Fig.3  EMPA surface mappings of main elements of as-cast Mg-13Gd-2Cu (a) and Mg-13Gd-2Cu-2Zn (b) alloys
Fig.4  Low magnification BS-SEM images of Mg-13Gd-2Cu (a) and Mg-13Gd-2Cu-2Zn (b) along the extrusion direction, Mg-13Gd-2Cu (c) and Mg-13Gd-2Cu-2Zn (d) perpendicular to the extrusion direction
Fig.5  High magnification BS-SEM images of Mg-13Gd-2Cu (a) and Mg-13Gd-2Cu-2Zn (b) along the extrusion direction, Mg-13Gd-2Cu (c) and Mg-13Gd-2Cu-2Zn (d) perpendicular to the extrusion direction
Fig.6  SEM images of two as-extruded alloys after single face immersion for 24 h: (a, c) Mg-13Gd-2Cu, (b, d) Mg-13Gd-2Cu-2Zn
Fig.7  Tafel curves of two as-extruded alloys under different scanning rates: (a) 5 mV/s; (b) 2 mV/s; (c) 1 mV/s; (d)0.5 mV/s
Corrosion rate / mVs-1 Sample Ecorr / V Icorr / mAcm-2 R / Ω
5 Mg-13Gd-2Cu -1.552 0.5668 60.1
Mg-13Gd-2Cu-2Zn -1.536 0.3046 62.9
2 Mg-13Gd-2Cu -1.535 1.0720 55.9
Mg-13Gd-2Cu-2Zn -1.487 0.9497 58.0
1 Mg-13Gd-2Cu -1.552 1.0541 56.5
Mg-13Gd-2Cu-2Zn -1.545 0.9392 58.2
0.5 Mg-13Gd-2Cu -1.544 1.2320 44.0
Mg-13Gd-2Cu-2Zn -1.496 0.9981 50.6
Table 2  Fitting values of various parameters based on Tafel curves in Fig.7
Fig.8  BS-SEM images of as-extruded Mg-13Gd-2Cu (a) and Mg-13Gd-2Cu-2Zn (b) alloys after electrochemical measurements under 1mV/s scanning rate
[1] Pollock T M.Weight loss with magnesium alloys[J]. Science, 2010, 328: 986
[2] Joost W J.Reducing vehicle weight and improving U.S. energy efficiency using integrated computational materials engineering[J]. JOM, 2012, 64: 1032
[3] Movahedi R A, Mahmudi R, Wu G H, et al.Enhanced superplasticity in an extruded high strength Mg-Gd-Y-Zr alloy with Ag addition[J]. J. Alloy. Compd., 2015, 626: 309
[4] Tang B Y, Chen P, Dong L L, et al.First-principles investigation of the structural and mechanical properties of β '' phase in Mg-Gd alloy system[J]. J. Alloy. Compd., 2010, 492(1/2): 416
[5] Zhang H J, Meng J, Tang D X.Investigation, exploitation and application of magnesium-rare earth alloy as a structure material[J]. J. Chin. Soc. Rare. Earth., 2004, 22(1): 40
[5] (张洪杰, 孟健, 唐定骧. 高性能镁–稀土结构材料的研制、开发与应用[J]. 中国稀土学报, 2004, 22(1): 40)
[6] Geng Z W, Xiao D H, Chen L.Microstructure, mechanical properties, and corrosion behavior of degradable Mg-Al-Cu-Zn-Gd alloys[J]. J. Alloy. Compd., 2016, 686: 145
[7] Niardike B L,Ebert T.Magnesium: properties-applications-potential[J]. Mater. Sci. Eng., 2001, A302: 37
[8] Watson D R, Durst D G, Harris J T, et al.One-trip multistage completion technology for unconventional gas formations [A]. CIPC/SPE Gas Technology Symposium 2008 Joint Conference[C]. Calgary: 2008
[9] Franco C, Solares R, Marri H, et al.The use of stagefrac new technology to complete and stimulate horizontal wells: field case [R]. Al-Khobar: SPE Saudia Arabia Section Technical Symposium, 2008
[10] Themig D.New technologies enhance efficiency of horizontal, mu-ltistage fracturing[J]. J. Pet. Technol., 2011, 63(4): 52
[11] Xu Z Y, Agrawal G. Nanomartix powder metal compact [P]. US. Patent, 2011US 20110132143A1
[12] Xu Z Y, Agrawal G, Salinas B J, et al.Smart nanostructured materials deliver high reliability completion tools for gas shale fracturing [R]. Denver: SPE Annual Technical Conference and Exhibition, 2011
[13] Xiao D H, Li X X. A kind of pressure as-cast magnesium alloy that can be corroded rapidly [P]. China Patent, 2013 CN 20130 284659
[14] Xiao D H, Geng Z W, Chen L.Effects of alloying elements on microstructure and properties of magnesium alloys for ball[J]. Metall. Mater. Trans., 2015, 46A: 4793
[15] Chen L, Wu Z, Xiao D H.Effects of copper on the microstructure and properties of Mg-17Al-3Zn alloys[J]. Mater. Corros., 2015 66: 1159
[16] Ma L J, Guo Z C, Song Y H, et al.Magnesium alloy sacrificial anode and its application in corrosion protection engineering[J]. Sichuan Chem. Ind. Corros. Control., 2003, 6(3): 38
[16] (马丽杰, 郭忠诚, 宋曰海等. 镁合金牺牲阳极及其在防腐蚀工程中的应用[J]. 四川化工与腐蚀控制, 2003, 6(3): 38)
[17] Zhang J S, Xu J D, Cheng W L, et al.Corrosion behavior of Mg-Zn-Y alloy with long-period stacking ordered structures[J]. J. Mater. Sci. Technol., 2012, 28(12): 1157
[18] Li Y.The control of LPSO phase and its influence on the corrosion behavior of Mg-RE-Zn series magnesium alloys [D]. Chongqing: Chongqing University, 2015
[18] (李阳. Mg-RE-Zn系镁合金中LPSO相的调控及其对腐蚀行为的影响 [D]. 重庆: 重庆大学, 2015)
[19] He W W, Zhang E L, Yang K.Effect of Y on the bio-corrosion behavior of extruded Mg-Zn-Mn alloy in Hank's solution[J]. Mater. Sci. Eng., 2010, C30: 167
[20] Zhao M Q, Lei A L.Metal Corrosion and Metal Corrosion Protection [M]. Beijing: National Defence Industry Press, 2014
[20] (赵麦群, 雷阿丽. 金属的腐蚀与防护 [M]. 北京: 国防工业出版社, 2014)
[21] Zhao X, Shi L, Xu J.Mg-Zn-Y alloys with long-period stacking ordered structure: In vitro assessments of biodegradation behavior[J]. Mater. Sci. Eng., 2013, C33(7): 3627
[22] Li H Y, Li Z S, Zhang S Z.Corrosion and protection research of magnesium alloys[J]. Corros. Prot., 2010, 31(11): 878
[22] (李海燕, 李志生, 张世珍等. 镁合金的腐蚀与防护研究进展[J]. 腐蚀与防护, 2010, 31(11): 878)
[23] Zeng R C, Chen J, Zhang J.Research and progress of galvanic corrosion of magnesium alloys[J]. Mater. Rev., 2008, 22(1): 107
[23] (曾荣昌, 陈君, 张津. 镁合金电偶腐蚀研究及其进展[J]. 材料导报, 2008, 22(1): 107)
[24] Li W C.Corrosion and rare earth conversion coating of magnesium alloy with high strength and toughness [D]. Tianjin: Tianjin University, 2011
[24] (李文才. 高强韧镁合金的腐蚀及稀土转化处理研究 [D]. 天津: 天津大学, 2011)
[25] Huang S, Wang J F, Hou F, et al.Effect of Sn on the formation of the long period stacking ordered phase and mechanical properties of Mg-RE-Zn alloy[J]. Mater. Lett., 2014, 137: 143
[26] Abady G M, Hilal N H, Rabiee M E, et al.Effect of Al content on the corrosion behavior of Mg-Al alloys in aqueous solutions of different pH[J]. Electrochim. Acta, 2010, 55(22): 6651
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[3] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[4] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[5] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[6] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[7] WEI Xinxin,ZHANG Bo,MA Xiuliang. TEM Investigation to Oxide Scale Formed on Single Crystal Alloy FeCr15Ni15 at High Temperature[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[8] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[9] FU Anqing,ZHAO Mifeng,LI Chengzheng,BAI Yan,ZHU Wenjun,MA Lei,XIONG Maoxian,XIE Junfeng,LEI Xiaowei,LV Naixin. Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[10] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[11] Kai WANG, Yaoyong YI, Qinghua LU, Jianglong YI, Zexin JIANG, Jinjun MA, Yu ZHANG. Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[12] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[13] Yue LI, Jian WANG, Yong ZHANG, Jingang BAI, Yadi HU, Yongfeng QIAO, Caili ZHANG, Peide HAN. Analysis of Initial Oxidation Process of 2205 Duplex Stainless Steel in Closed Container at High Temperature[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[14] Guangrui JIANG, Guanghui LIU. Microstructure and Corrosion Resistance of Solidified Zn-Al-Mg Alloys[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
[15] Zhenguo NIU, Pushan GUO, Hong YE, Lijing YANG, Cheng XU, Zhenlun SONG. Microstructure Evolution and Corrosion Behavior of Degradable Zn-7Mg Alloy After Heat Treatment[J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353.
No Suggested Reading articles found!