Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (6): 587-594    DOI: 10.11902/1005.4537.2016.183
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Wear Properties of 2024 Al-Alloy in Artificial Seawater
Yongqi TAO1,2,Gang LIU2,Yesheng LI1(),Zhixiang ZENG2
1. School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2. Zhejiang Key Laboratory of Marine Materials and Protection Technology, Key Laboratory of Marine New Materials and Related Technology, Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
Download:  HTML  PDF(1073KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The tribocorrosion behavior of 2024 Al-alloy in artificial seawater was studied, using a pin-on-disk reciprocating friction and wear tester integrated with a potentiostat for electrochemical test. The result showed the material loss caused by wear-corrosion processes without cathodic protection was larger than that with cathodic protection, indicating synergistic effect of mechanical wear and corrosion process. The ratio of the mechanical wear to the total degradation ranged from 70.3% to 98.2%, which indicated mechanical wear component prevailed over the corrosion component. The proportion of the mass loss caused by wear-corrosion synergism to the total degradation was between 1.8% and 29.7%, and therefore the wear-corrosion synergism could not be neglected.

Key words:  2024 aluminium alloy      seawater      corrosion-wear      synergistic effect     

Cite this article: 

Yongqi TAO,Gang LIU,Yesheng LI,Zhixiang ZENG. Corrosion Wear Properties of 2024 Al-Alloy in Artificial Seawater. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 587-594.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.183     OR     https://www.jcscp.org/EN/Y2016/V36/I6/587

Fig.1  Schematic view of components of tribocorrosiontester
Fig.2  Friction coefficient (a) wear rate (b) and hardness (c) curves of 2024 aluminium alloy under different loading conditions in artificial seawater
Fig.3  SEM images of worn surfaces of 2024 aluminium alloy after pure mechanical wear (a~d) and tribocorrosion (e~h) under 5 N (a, e), 10 N (b, f), 25 N (c, g) and 50 N (d, h) load (The sliding direction is from bottom to top)
Fig.4  XPS spectra of the corrosion product film fromed on 2024 aluminium alloy tribocorroded under 50 N after argon ion sputter etching for 0 s (a), 180 s (b) and 720 s (c)
Fig.5  Variations of OCP of 2024 aluminium alloy before, during and after sliding in artificial seawater with load
Fig.6  Polarization curves of 2024 aluminium alloy under corrosion and corrosion-wear conditions
Fig.7  Contributions of the different components to the total material loss in the tribocorrosion tests under 5 N (a), 10 N (b), 25 N (c) and 50 N (d)
Load / N Material loss rate (mm3mm2-yr) S/T / %
T W0 C0 Cw S ΔCw ΔWc
5 1012.0 993.9 0.00152 0.22 18.1 0.2 17.9 1.8
10 2360.5 1660.3 0.00152 0.76 700.3 0.8 699.5 29.7
25 4111.2 3682.0 0.00152 1.66 429.2 1.7 427.5 10.4
50 7472.4 5995.1 0.00152 1.87 1477.3 1.9 1475.4 19.8
Table 2  Components and proportions of material loss in corrosion wear process
[1] Liu X Y, Jiang J M, Chen Z T, et al.Research progress of aluminium alloy corrosion protection[J]. Modern Paint Coat., 2007, 10(12): 11
[1] (刘希燕, 蒋健明, 陈正涛等. 铝合金防腐保护研究进展[J]. 现代涂料与涂装, 2007, 10(12): 11)
[2] Staley J T, Liu J, Hunt W H.Aluminum alloys for aerostructures[J]. Adv. Mater. Proce., 1997, 152(4): 10
[3] Mu Z T, Xiong Y P.Corrosion damage of aircraft structure main body material characteristics analysis[J]. Mater. Prot., 2001, 34(12): 49
[3] (穆志韬, 熊玉平. 飞机结构主体材料腐蚀损伤特点分析[J]. 材料保护, 2001, 34(12): 49)
[4] Xu L, Chen Y L, Hu J J.Aluminum alloy corrosion characteristics and damage mechanism[J]. J. Aircraft Des., 2012, 32(5): 27
[4] (徐丽, 陈跃良, 胡建军. 铝合金微动腐蚀特性及损伤机制[J]. 飞机设计, 2012, 32(5): 27)
[5] Huang G Q.The corrosion resistance of al alloy in seawater and the relationship between the corrosion potential[J]. Corros. Sci. Prot. Technol., 1998, 10(3): 150
[5] (黄桂桥. 铝合金在海水中的耐蚀性与腐蚀电位的关系[J]. 腐蚀科学与防护技术, 1998, 10(3): 150)
[6] Zhang Y H, Chang X L, Zhang S Y, et al.Aging aircraft structure corrosion damage evaluation parameter study[J]. Corros. Prot., 2008, 29(9): 517
[6] (张有宏, 常新龙, 张世英等. 老龄飞行器结构腐蚀损伤评价参数研究[J]. 腐蚀与防护, 2008, 29(9): 517)
[7] Lin L Y, Zhao Y H.Severe corrosivity and its eletrochemical mechanism of seawater in xiamen sea area to Al-Mg alloys[J]. J. Electrochem., 2003, 9(3): 299
[7] (林乐耘, 赵月红. 厦门海域海水对铝镁合金腐蚀的苛刻性及其电化学机理[J]. 电化学, 2003, 9(3): 299)
[8] Zhao J, Chen S A, Liu Y G, et al.Research progress of high performance drill rod[J]. Petrol. Field Mach., 2011, 40(5): 96
[8] (赵金, 陈绍安, 刘永刚等. 高性能钻杆研究进展[J]. 石油矿场机械, 2011, 40(5): 96)
[9] Yan T N, Xue W, Lu C H.The superiority of Aluminum Alloy in geological exploration drilling pipe and its application prospect in deep[J]. Explor. Eng.(Geotech. Drill. Eng.), 2010, 37(2): 27
[9] (鄢泰宁, 薛维, 卢春华. 铝合金钻杆的优越性及其在地探深孔中的应用前景[J]. 探矿工程 (岩土钻掘工程), 2010, 37(2): 27)
[10] Wang X H, Guo J, Guo X H, et al.Aluminum alloy pipe material, wear characteristics and research progress of[J]. Mater. Rev., 2014, 28(S1): 431
[10] (王小红, 郭俊, 郭晓华等. 铝合金钻杆材料、特点及其磨损研究进展[J]. 材料导报, 2014, 28(S1): 431)
[11] Jiang X X, Li S Z, Li S.Metal Corrosion Wear [M]. Beijing: Chemical Industry Press, 2003
[11] (姜晓霞, 李诗卓, 李曙. 金属的腐蚀磨损 [M]. 北京: 化学工业出版社, 2003)
[12] Ding H Y.Aluminum alloy and titanium alloy corrosion and wear in the rain/water environment interaction research [D]. Nanjing university of aeronautics and astronautics, 2007
[12] (丁红燕. 铝合金和钛合金在雨水/海水环境下的腐蚀与磨损交互作用研究 [D]. 南京航空航天大学, 2007)
[13] Li N L, Wang L, Ding H Y.Corrosion of LY12 aluminum alloy in rain wear[J]. Corros. Prot., 2009, 12: 899
[13] (李年莲, 王玲, 丁红燕. LY12铝合金在雨水中的腐蚀磨损[J]. 腐蚀与防护, 2009, 12: 899)
[14] Chen J, Wang J Z, Chen B B, et al.Tribocorrosion behaviors of inconel 625 alloy sliding against 316 steel in seawater[J]. Tribol. Trans., 2011, 54(4): 514
[15] Watson S W, Friedersdorf F J, Madsen B W, et al.Methods of measuring wear-corrosion synergism[J]. Wear, 1995, 181(2): 476
[16] Zhang Y, Yin X, Wang J, et al.Influence of microstructure evolution on tribocorrosion of 304SS in artificial seawater[J]. Corros. Sci., 2014, 88(11): 423
[17] Tse M K, Suh N P.Chemical effects in sliding wear of aluminum[J]. Wear, 1977, 44(1): 145
[18] Sun Y, Rana V.Tribocorrosion behaviour of AISI 304 stainless steel in 0.5 M NaCl solution[J]. Mater. Chem. Phys., 2011, 129(1/2): 138
[19] Landolt D, Mischler S, Stemp M.Electrochemical methods in tribocorrosion: A critical appraisal[J]. Electrochim. Acta, 2001, 46(24/25): 3913
[1] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[2] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[3] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[4] DING Guoqing,LI Xiangyang,ZHANG Bo,YANG Zhaohui,HUANG Guiqiao,YANG Haiyang,LIU Kaiji. Variation of Free Corrosion Potential of Several Metallic Materials in Natural Seawater[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[5] Shaokun YAN,Dajiang ZHENG,Jiang WEI,Guangling SONG,Lian ZHOU. Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[6] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[7] Dan YANG,Dinglin LI,Yanliang HUANG,Pilong HUA,Xia ZHAO,Peng PENG,Xiutong WANG. Research Progress on Corrosion Issue and Metallic Material Selection Related with Seawater Pumped Storage Power Plant[J]. 中国腐蚀与防护学报, 2019, 39(1): 1-8.
[8] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[9] Yan SUN, Jiajia WU, Dun ZHANG, Shiqiang CHEN. Investigation of Microorganisms in Corrosion Product Scales on Q235 Carbon Steel Exposed to Tidal- and Full Immersion Zone at Qindao- and Sanya-sea Waters[J]. 中国腐蚀与防护学报, 2018, 38(4): 333-342.
[10] Zhenhua WANG, Yang BAI, Xiao MA, Shaohua XING. Numerical Simulation of Galvanic Corrosion for Couple of Ti-alloy with Cu-alloy in Seawaters[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[11] Ying YANG, Cui LIN, Xiaobin ZHAO, Yifei ZHANG. Initial Stage Cavitation-corrosion of TA2 in Aqueous LiBr Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 540-546.
[12] Tianyi ZHANG,Junsheng WU,Hailong GUO,Xiaogang LI. Influence of HSO3- on Passive Film Composition and Corrosion Resistance of 2205 Duplex Stainless Steelin Simulated Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[13] Zihao WANG,Yunhua HUANG,Jia LI,Lang YANG,Donghan XIE. Effect of Nb on Corrosion Behavior of Simulated Weld HAZs of X80 Pipeline Steel in Simulated Seawater Environments Correxxxxsponding to Shallow Sea and Deep Sea[J]. 中国腐蚀与防护学报, 2016, 36(6): 604-610.
[14] Jihui WANG,Huajie YAN,Wenbin HU. Preparation and Inhibition Behavior of Molybdate Intercalated ZnAlCe-hydrotalcite[J]. 中国腐蚀与防护学报, 2016, 36(6): 637-644.
[15] Jianchun ZHANG,Jingyang JIANG,Yang LI,Jinjie SHI,Longfei ZUO,Danqian WANG,Han MA. Passive Films Formed on Seawater Corrosion Resistant Rebar 00Cr10MoV in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
No Suggested Reading articles found!