Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (1): 12-20    DOI: 10.11902/1005.4537.2013.253
Current Issue | Archive | Adv Search |
Research Progress on Corrosion and Protection in Deep-sea Environment
CAO Pan1,2, ZHOU Tingting1,2, BAI Xiuqin1,2(), YUAN Chengqing1,2
1. Reliability Engineering Institute, School of Energy and Power Engineering, Wuhan University of Technology, Wuhan, 430063, China
2. Key Laboratory of Marine Power Engineering & Technology (Ministry of Transport), Wuhan University of Technology, Wuhan, 430063, China
Download:  HTML  PDF(1823KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Deep-sea environment is very harsh, and will have a huge impact on underwater vehicle and deep-sea device. This article discusses of the corrosion related factors in deep-sea environment such as the dissolved oxygen, pressure, salinity, temperature, flow rate etc. as well as their impact on the corrosion of metals, alloys and other materials, then comes to the conclusion that the dissolved oxygen is the most important factor for the corrosion of metals and alloys. The research status quo of deep-sea environment corrosion of metal and alloy materials are reviewed with emphasis on four common types of corrosion such as pitting corrosion, crevice corrosion, tunnel corrosion and stress corrosion. Finally countermeasures for the corrosion control of metals and alloys in deep-sea environment are also introduced.

Key words:  deep-sea environment      corrosion      protection     
ZTFLH:  TG172.5  

Cite this article: 

CAO Pan, ZHOU Tingting, BAI Xiuqin, YUAN Chengqing. Research Progress on Corrosion and Protection in Deep-sea Environment. Journal of Chinese Society for Corrosion and protection, 2015, 35(1): 12-20.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.253     OR     https://www.jcscp.org/EN/Y2015/V35/I1/12

Depth
m
Temperature
Salinity
Oxygen
mgL-1
300 10.8 34.4 3.46
500 8.0 34.4 2.66
800 5.2 34.5 2.48
1200 3.4 34.6 2.66
2000 2.5 34.6 2.96
3000 2.4 34.6 3.20
Table 1  Environmental factors of sea water at South China Sea[6]
Fig.1  SEM images of surface pitting morphology of steel coupon exposed in an Bohai oilfield[29]
Fig.2  Appearances of 304 stainless steel after 1 a exposure in deep-sea environment[34]
Fig.3  Macrophotograph (a) and fractograph (b) showing stress corrosion cracking of 300 series stainless steel shackle[36]
[1] Chen M N. Bacterial diversity of deep-sea sediments from the east and west pacific ocean [D]. Beijing: Graduate School of Chinese Academy of Sciences, 2007
(陈明娜. 东-西太平洋深海沉积物细菌多样性研究 [D]. 北京: 中国科学院研究生院, 2007)
[2] Mo J, Xiao F. Development of world deepwater technology[J]. Mar.
Geol. Front., 2012, 28(6): 65
(莫杰, 肖菲. 世界深海技术的发展[J]. 海洋地质前沿, 2012, 28(6): 65)
[3] Liu C. Materials rushed into the deep sea[J]. Adv. Mater. Ind., 2013,(9): 69
(刘超. 进军深海材料争先[J]. 新材料产业, 2013, (9): 69)
[4] Jiang H, Wang H. Research survey of global deepwater materials[J]. Adv. Mater. Ind., 2013, (11): 7
(江洪, 王徽. 全球深海材料研究概况[J]. 新材料产业, 2013, (11): 7)
[5] Robert E R. translated by Yang X, Bao C X. Elements of Ocean Engineering[M]. Shanghai: Shanghai Jiaotong University Press, 2002
(兰德尔著. 杨槱, 包丛喜译. 海洋工程基础[M]. 上海: 上海交通大学出版社, 2002)
[6] Hou J, Guo W M, Deng C L. Influence of deep-sea environmental factors on corrosion behavior of carbon steel[J]. Equip. Environ. Eng., 2008, 5(6): 82
(侯健, 郭为民, 邓春龙. 深海环境因素对碳钢腐蚀行为的影响[J]. 装备环境工程, 2008, 5(6): 82)
[7] Liu B,Cong Y,Zhang T,et al. Infuence of deep-sea environment on corrosion behavior of pure nickel: Influence of hydrostatic pressures on performance of passive film on purenickel [J]. Corros. Sci. Prot. Technol., 2009, 21(1): 5
(刘斌, 丛园, 张涛等. 深海环境下静水压力对纯镍腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2009, 21(1): 5)
[8] Beccaria A M,Poggi G,Castello G. Influence of passion film composition and sea water pressure on resistance to localized corrosion of some stainless steels in sea water [J]. Br. Corros. J., 1995, 30(4): 283
[9] Zhang Z. The EIS study of corrosion behavior of epoxy and zinc-rich composite coatings under a few corrosion environments [D]. Beijing: Beijing University of Chemical Technology, 2008
(张智. 环氧和富锌两类复合涂层在几种腐蚀环境中失效行为的EIS研究 [D]. 北京: 北京化工大学, 2008)
[10] Sawant S S, Venkat K, Wagh A B. Corrosion of metals and alloys in the coastal and deepwaters of the Arabian Sea and the bay of Bengal[J]. Indian J. Technol., 1993, 31(12): 862
[11] Fu X L, Ma L, Yan Y G, et al. Effect of dissolved oxygen on corrosion behavior of hull steel in seawater[J]. Corros. Prot., 2010, 31(12): 942
(傅晓蕾, 马力, 闰永贵等. 溶解氧浓度对船体钢在海水中腐蚀行为的影响[J]. 腐蚀与防护, 2010, 31(12): 942)
[12] Xu L K, Li W J, Chen G Z. Test technology of deep corrosion[J]. Mar. Sci., 2005, 29(7): 1
(许立坤, 李文军, 陈光章. 深海腐蚀试验技术[J]. 海洋科学, 2005, 29(7): 1)
[13] Wang J, Meng J, Tang X, et al. Corrosion behavior of steel assessment techniques in deep ocean[J]. J. Chin. Soc. Corros. Prot., 2007, 27(1): 1
(王佳, 孟洁, 唐晓等. 深海环境钢材腐蚀行为评价技术[J]. 中国腐蚀与防护学报, 2007, 27(1): 1)
[14] Zhou J L, Li X G, Cheng X Q, et al. Research progress on corrosion of metallic materials in deep-sea environment[J]. Corros. Sci. Prot. Technol., 2010, 22(1): 47
(周建龙, 李晓刚, 程学群等. 深海环境下金属及合金材料腐蚀研究进展[J]. 腐蚀科学与防护技术, 2010, 22(1): 47)
[15] Schumacher M. Seawater Corrosion Handbook [M]. New Jersey:Park Ridge, 1979
[16] Venkatesan R. Studies on corrosion of some structural materials in deep sea environm-ent [D]. Bengaluru: India Department of Metallurgy India Institute of Science, 2000
[17] Tang X, Wang J, Li Y. Influence of the corrosion rate of A3 steel sea water flow on[J]. Mar. Sci., 2005, 29(7): 26
(唐晓, 王佳, 李焰. 海水流动对A3钢腐蚀速度的影响[J]. 海洋科学, 2005, 29(7): 26)
[18] Wang Y Y. Corrosion behavior of aluminum alloy in flowing seawater[J]. Equip. Environ. Eng., 2005, 2(6): 72
(王曰义. 铝合金在流动海水中的腐蚀性为[J]. 装备环境工程, 2005, 2(6): 72)
[19] Duan J Z, Ma S D, Huang Y L. Study on regional seabed sediment induced corrosion[J]. Corros. Sci. Technol. Prot., 2001, 13(1): 37
(段继周, 马士德, 黄彦良. 区域性海底沉积物腐蚀研究进展[J]. 腐蚀科学与防护技术, 2001, 13(1): 37)
[20] Fischer K P. Cathodic protection in salinemud containing sul-fate reducing bacteria[J]. Mater. Perform., 1981, 20(10): 41
[21] Castaneda H, Benetton X D. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions[J]. Corros. Sci., 2008, 50: 1169
[22] Rao T S, Kora A J, Anupkumar B, et al. Pitting corrosion of titanium by a fresh waterstrain of sulphate reducing baeteria (Desulfovibrio vulgaris)[J]. Corros. Sci., 2005, 47: 1071
[23] Shalaby H M, Hasan A A, Sabti F A. Effects of inorganic sulphide and ammonia on microbial corrosion behavior of 70Cu-30Ni alloy in seawater[J]. Br. Corros. J., 1999, 34(4): 292
[24] Dexter S C. Effects of variations in seawater upon the corrosion of aluminum[J]. Corrosion, 1980, 36(8): 423
[25] Zheng J Y. Marine biofouling and corrosion of materials[J]. J. Chin. Soc. Corros. Prot., 2010, 30(2): 171
(郑纪勇. 海洋生物污损与材料腐蚀[J]. 中国腐蚀与防护学报, 2010, 30(2): 171)
[26] Cao G L, Li G M, Chang W S, et al. Effects of pH value and dissolved oxygen on pit initiation behavior of mild steel[J]. Equip. Environ. Eng., 2009, 6(6): 9
(曹国良, 李国民, 常万顺等. pH值和溶解氧对低碳钢点蚀诱发的影响[J]. 装备环境工程, 2009, 6(6): 9)
[27] Guo W M, Li W J. Significant progress on the development of deep-sea environment corrosion test device[J]. Equip. Environ. Eng., 2006, 3(6): 60
(郭为民, 李文军. 深海环境腐蚀试验装置研制取得重大进展[J]. 装备环境工程, 2006, 3(6): 60)
[28] Pekka P. Effect of deep sea environment on corrosion of some aluminum alloys [R]. Finland VTT Offsetpaino: Espoo Research Reports 724, 1991: 17
[29] Zhang Y, Lu Y, Zhang Y. Research on pitting of carbon steel caused by microorganisms[J]. China Offshore Oil Gas, 2012, 24(6): 66
(张颖, 陆原, 张勇等. 微生物致碳钢点蚀试验研究[J]. 中国海上油气, 2012, 24(6): 66)
[30] Venkatesan R, Venkatasamy M A, Bhaskaran T A, et al. Corrosion of ferrous alloys in deep sea environments[J]. Br. Corros. J., 2002, 37(4): 257
[31] Schumacher ed,translated by Li D C,Yang Y,et al. Seawater Corrosion Manual[M]. Beijing: National Defense Industry Press, 1985
(舒马赫编,李大超,杨荫等译. 海水腐蚀手册[M]. 北京: 国防工业出版社, 1985)
[32] Yang Y G,Zhang T,Shao Y W,et al. Effect of hydrostatic pressure on the corrosion behaviour of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2010, 52: 2697
[33] Logan H L. Studies of hot salt cracking of the titanium-8Al-1Mo-1V alloy [A]. Proce-edings of Conference on Fundamental Aapects of Stress Corrosion Cracking [C]. Houston, Texas: Engineers National Association of Corrosion, 1969: 662
[34] Zheng J Q. Research of progress of pitting corrosion of stainless steel in simulated deep-sea environment [D]. Zhenjiang: Jiangsu University of Science and Technology, 2011
(郑家青. 模拟深海环境下不锈钢点蚀性能研究 [D]. 镇江: 江苏科技大学, 2011)
[35] Reinhart F M. Corrosion of Materials in Hydrospace [R]. Naval Civil Engineering Lab Port HUENEME CA, 1966
[36] Wang W W, Guo W M, Zhang H X. Research on the corrosion of stainless steel in deep ocean[J]. Equip. Environ. Eng., 2010, 7(5): 79
(王伟伟, 郭为民, 张慧霞. 不锈钢深海腐蚀研究[J]. 装备环境工程, 2010, 7(5): 79)
[37] Peng W C, Hou J, Guo W M. Research progress on the corrosion of aluminum alloy in deep ocean[J]. Develop. Appl. Mater., 2010,25(1): 59
(彭文才, 侯健, 郭为民. 铝合金深海腐蚀研究进展[J]. 材料开发与应用, 2010, 25(1): 59)
[38] King R A, Miller J D A, Smith J S. Corrosion of mild steel by ironsulfides[J]. Br. Corros. J., 1973, (8): 137
[39] Duan J Z. Microbiologically influenced corrosion of steels in sea water and seamud containing sulfate-reducing bacterial [D]. Beijing: Graduate School of Chinese Academy of Sciences, 2003
(段继周. 海水和海泥环境中厌氧细菌对海洋用钢微生物腐蚀行为的影响 [D]. 北京: 中国科学院研究生院, 2003)
[40] Feng L C, Qiao B, He Y Q, et al. Development of ceramic matrix composite used in deep-sea environment[J]. Mater. Heat Treat., 2012, 41(22): 132
(冯立超, 乔斌, 贺毅强等. 深海装备材料之陶瓷基复合材料的研究进展[J]. 材料热处理技术, 2012, 41(22): 132)
[41] Elisabeth M D, Li D Y, Randall T I. A peptide-stainless steel reaction that yields a new bioorganic-metal state of matter[J]. Biomaterials, 2011, 32: 5311
[42] Lu X J, Xiang Z L, Liu H C, et al. Applied research on 3LPP anticorrosion structure used in submarine pipeline[J]. Petrol. Eng. Constr., 2010, 36(6): 15
(吕喜军, 相政乐, 刘海超等. 3LPP防腐层在海底管道的应用研究[J]. 石油工程建设, 2010, 36(6): 15)
[43] Howell G R, Cheng Y F. Characterization of high performance composite coating for the northern pipeline application[J]. Prog. Org. Coat., 2007, 60(2): 148
[44] Huang Y L, Cao C N, Lin H C, et al. Investigation on SCC and SCC inhibition of AISI316 stainless steel in acidic chloride solution[J]. Corros. Sci. Prot. Technol., 1993, 5(3): 192
(黄彦良, 曹楚南, 林海潮等. 缓蚀剂对316L不锈钢在酸性氯离子溶液中应力腐蚀开裂的作用[J]. 腐蚀科学与防护技术, 1993, 5(3): 192)
[45] Liu B. Study on the evaluation technique for the performance of anticorrosion coatings under deep sea environment[J]. Shanghai Coat., 2011, 49(5): 34
(刘斌. 深海环境下防腐蚀涂料性能评价技术研究[J]. 上海涂料, 2011, 49(5): 34)
[46] Hu G. Study on submarine pipeline corrosion detection and corrosion protection [D]. Chongqing: Chongqing University, 2007
(胡舸. 海底管线腐蚀检测与腐蚀预测的研究 [D]. 重庆: 重庆大学, 2007)
[47] Lee A K, Buehler M G, Newman D K. Influence of adual-species biofilm on the corros-ion of mild steel[J]. Corros. Sci., 2006, 48: 165
[48] Melehers R E. Probabilistic models of corrosion for reliability assessment and mainte-nance planning [A]. Proc 20th Int Conf OffShore Mechanics and Arctic Engineering [C]. NewYork: ASME International Press, 2001: 1
[1] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[3] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[4] QIAO Jisen, XIA Zonghui, LIU Libo, XU Jiamin, LIU Xudong. Corrosion Resistance of Aluminum-magnesium Bimetal Composite Material Prepared by Isothermal Indirect Extrusion[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[5] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[6] GE Pengli, ZENG Wenguang, XIAO Wenwen, GAO Duolong, ZHANG Jiangjiang, LI Fang. Effect of Applied Stress and Medium Flow on Corrosion Behavior of Carbon Steel in H2S/CO2 Coexisting Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[7] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[8] ZHANG Yifan, YUAN Xiaoguang, HUANG Hongjun, ZUO Xiaojiao, CHENG Yulin. Corrosion Behavior of Cu-Al Laminated Board in Neutral Salt Fog Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[9] JIANG Bochen, CAO Jiangdong, CAO Xueyu, WANG Jiantao, ZHANG Shaopeng. Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[10] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[11] LUAN Hao, MENG Fandi, LIU Li, CUI Yu, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Preparation and Anticorrosion Performance of M-phenylenediamine-graphene Oxide/Organic Coating[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[12] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[13] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[14] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[15] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
No Suggested Reading articles found!