Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (1): 21-26    DOI: 10.11902/1005.4537.2013.241
Current Issue | Archive | Adv Search |
Electrochemical Behavior of X80 Pipeline Steel in Simulated Red Soil Solutions with Different pH
LIU Shuyun1, WANG Shuaixing1,2, DU Nan1(), WANG Liqiang3, XIAO Jinhua1
1. National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
2. Institute of Corrosion and Protection, Northwestern Polytechnical University, Xi'an 710072, China
3. Department of Manufacture Engineering, Chengdu Aircraft Industrial Group Co., Chengdu 610092, China
Download:  HTML  PDF(2136KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The electrochemical behavior of X80 pipeline steel in simulated red soil solutions with different pH, which aim to simulate the corrosive medium of typical red soil at Yingtan area of the Southeast China was studied by potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS) and three-dimensional video microscope. The results show that the corrosion of X80 steel in simulated red soil solution is controlled by oxygen depolarization reactions when pH is 5.5; a corrosion products scale formed on the steel surface due to corrosion; the EIS of the corroded steel is composed of incomplete capacitive arc at high-frequency and complete capacitive arc at low-frequency. With increasing pH value, the corrosion processes of X80 steel gradually convert into being controlled by electrochemical activation, while its corrosion current density increases gradually and its corrosion resistance decreases. When pH value reduces to the range 4.0~3.0, numerous corrosion pits occur on the surface of X80 steel and correspondingly inductive arc appears in the low-frequency region of EIS.

Key words:  X80 pipeline steel      simulated red soil solution      pH      electrochemical impedance spectroscopy (EIS)     
ZTFLH:  TG179  

Cite this article: 

LIU Shuyun, WANG Shuaixing, DU Nan, WANG Liqiang, XIAO Jinhua. Electrochemical Behavior of X80 Pipeline Steel in Simulated Red Soil Solutions with Different pH. Journal of Chinese Society for Corrosion and protection, 2015, 35(1): 21-26.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.241     OR     https://www.jcscp.org/EN/Y2015/V35/I1/21

Fig.1  Potentiodynamic polarization curves of X80 steel in simulated red soil solutions with different pH values
pH icorr / (Acm-2) Ecorr / V
5.5 1.367×10-6 -0.3604
5.0 1.691×10-6 -0.4204
4.5 1.868×10-6 -0.4157
4.0 2.928×10-6 -0.4102
3.5 6.700×10-6 -0.5101
3.0 1.130×10-5 -0.6403
Table1  Fitted results of polarization curves for X80 steel in simulated red soil solutions with different pH values
Fig.2  Nyquist plots (a, b) and its equivalent circuits (c, d) for X80 steel in simulated red soil solutions with pH=5.5~4.5 (a, c) and pH=4.0~3.0 (b, d)
pH Rct / Ωcm2 Qdl / Fcm-2 ndl Rf / Ωcm2 Lf / Hcm-2 Qf / Fcm-2 nf R0 / Ωcm2 L0 / Hcm-2
5.5 221.8 8.67×10-5 0.8379 47.14 --- 6.578×10-8 0.8655 --- ---
5.0 145.6 1.813×10-4 0.8058 38.77 --- 3.578×10-7 0.8390 --- ---
4.5 118.4 3.051×10-4 0.7827 30.62 --- 9.026×10-7 0.7927 --- ---
4.0 84.5 7.148×10-4 0.7368 20.57 12.39 4.262×10-4 0.1726 11.84 3.681×10-5
3.5 46.9 3.567×10-4 0.816 11.72 2.8 1.051×10-4 0.0750 3.145 1.077×10-5
3.0 47.48 3.115×10-4 0.8856 17.55 10.21 3.304×10-4 0.0809 3.182 1.052×10-4
Table 2  Fitted results of EIS for X80 steel in simulated red soil solutions with different pH values
Fig.3  Rct curve for X80 steel in simulated red soil solutions with different pH values
Fig.4  Rf and nf curves for X80 steel in simulated red soil solutions with different pH values
Fig.5  Morphologies of X80 steel in simulated red soil solution with pH=5.5 (a), pH=5.0 (b), pH=4.5 (c), pH=4.0 (d), pH=3.5 (e) and pH=3.0 (f) after EIS tests
[1] Kong J H, Guo B, Liu C M, et al. Research and development of high strength pipeline steel X80[J]. Mater. Rev., 2004, 18(4): 23
(孔君华, 郭斌, 刘昌明等. 高钢级管线钢X80的研制与发展[J]. 材料导报, 2004, 18(4): 23)
[2] Niu J, Qi L H, Liu Y L, et al. Tempering microstructure and mechanical properties of pipeline steel X80[J]. Trans. Nonferrous Met. Soc. China, 2009, 19(3): 573
[3] Wang Y, Yu H Y, Cheng Y, et al. Corrosion behavior of X80 steel in different simulated soil solution[J]. Mater. Eng., 2012, 1: 25
(王莹, 俞红英, 程远等. X80钢在不同土壤模拟溶液中的腐蚀行为[J]. 材料工程, 2012, 1: 25)
[4] Zhao B, Du C W, Liu Z Y, et al. Corrosion behavior of X80 steel in Yingtan soil simulated solution under disboned coating[J]. Acta Metall. Sin., 2012, 48(2): 1530
(赵博, 杜翠薇, 刘智勇等. 剥离涂层下的X80钢在鹰潭土壤模拟溶液中的腐蚀行为[J]. 金属学报, 2012, 48(2): 1530)
[5] Liang P, Li X G, Du C W, et al. Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil solution[J]. Mater. Des.,2009, 30(5): 1712
[6] Liu Z Y, Zhai G L, Du C W, et al. Stress corrosion behavior of X70 pipeline steel in simulated solution of acid soil[J]. Acta Metall. Sin., 2008, 44(2): 209
(刘智勇, 翟国丽, 杜翠薇等. X70钢在酸性土壤模拟溶液中的应力腐蚀行为[J]. 金属学报, 2008, 44(2): 209)
[7] Xu C M, Huo C Y, Xiong Q R, et al. Corrosion behavior of X80 pipeline steel in simulated acid soil solution[J]. Mater. Mech. Eng., 2009, 33(5): 29
(胥聪敏, 霍春勇, 熊庆人等. X80管线钢在酸性土壤模拟溶液中的腐蚀行为[J]. 机械工程材料, 2009, 33(5): 29)
[8] Liang P, Du C W, Li X G, et al. Grey relation space analysis of effect of environmental factors on corrosion resistance of X70 pipeline steel in Yingtan soil simulated solution[J]. Corros. Prot., 2009, 30(2): 231
(梁平, 杜翠薇, 李晓刚等. X70管线钢在鹰潭土壤模拟溶液中腐蚀因素灰关联分析[J]. 腐蚀与防护, 2009, 30(4): 231)
[9] Liang P, Li X G, Du C W, et al. Effect of dissolved oxygen on corrosion resistance of X80 piepline steel in NS4 solution[J]. Corros. Sci. Prot. Technol., 2009, 21(1): 20
(梁平, 李晓刚, 杜翠薇等. 溶解氧对X80管线钢在NS4溶液中腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2009, 21(1): 20)
[10] Chen X, Du C W, Li X G. Influence of soil water content on corrosion behavior of X70 steel in Yingtan acidic soil[J]. J. Petrochem. Univ., 2007, 20(4): 55
(陈旭, 杜翠薇, 李晓刚. 含水率对X70钢在鹰潭酸性土壤中腐蚀行为的影响[J]. 石油化工高等学校学报, 2007, 20(4): 55)
[11] He J L,Long G,Huang Y,et al. Spatial and Temporal Distribution Law of Acid Rain in Jiangxi Province[M]. Beijing: China Environmental Science Press, 1998
(何纪力,龙刚,黄云等. 江西省酸雨时空分布规律研究[M]. 北京: 中国环境科学出版社, 1998)
[12] Eliyan F F, Mahdi E, Alfantazi A. Electrochemical evaluation of the corrosion behavior of API-X100 piepline steel in aerated bicarbonated solutions[J]. Corros. Sci., 2012, 58: 181
[13] Cao C N,Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy[M]. Beijing: Science Press, 2002
(曹楚南,张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002)
[14] Li M C, Lin H C, Cao C N. Study on soil corrosion of carbon steel by electrochemical impedance spectroscopy (EIS)[J]. J. Chin. Soc.
Corros. Prot., 2000, 20(2): 111
(李谋成, 林海潮, 曹楚南. 碳钢在土壤中腐蚀的电化学阻抗谱特征[J]. 中国腐蚀与防护学报, 2000, 20(2): 111)
[1] LUAN Hao, MENG Fandi, LIU Li, CUI Yu, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Preparation and Anticorrosion Performance of M-phenylenediamine-graphene Oxide/Organic Coating[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[2] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[3] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[5] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[6] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[7] ZHAO Dongyang, ZHOU Yu, WANG Dongying, NA Duo. Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[8] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[9] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[10] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[11] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[12] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[13] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[14] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[15] WANG Tingyong, DONG Ruyi, XU Shi, WANG Hui. Electrochemical Properties of Graphene Modified Mixed Metal Oxide Anodes of Ti/IrTaSnSb-G in NaCl Solutions at Low Temperature[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
No Suggested Reading articles found!