Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (1): 82-88    DOI: 10.11902/1005.4537.2013.041
Current Issue | Archive | Adv Search |
Formation of Malachite Rusts on Bronze in Environments with Excess of CO2
WU Taotao1, MENG Weiwei1, BAO Zhirong1, LI Yang2,3, PAN Chunxu1,3()
1. School of Physics and Technology and Center for Electron Microscopy, Wuhan University, Wuhan 430072, China
2. School of History, Wuhan University, Wuhan 430072, China
3. Center for Archaeometry, Wuhan University, Wuhan 430072, China
Download:  HTML  PDF(2531KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The formation of rusts consisted mainly of malachite on bronze was simulated with a new process, by which the corrosion test of bronze samples was performed in controllable environments with excess of CO2 contents, water vapor and chlorine ions. The chemical composition, microstructure and phase constituents of the corrosion products were characterized by means of optical microscopy, scanning electron microscope (SEM) with energy dispersive spectrometer (EDS), X-ray diffraction (XRD), and Raman microscopy. The results revealed that the characteristics of corrosion products were related with the content of CO2 and H2O in the environment. The growth mechanism of the rusts in these environments was discussed and the suggestions for preservation of the ancient bronzes were proposed.

Key words:  bronze      malachite      corrosion product      CO2 atmosphere environment     
Received:  01 April 2013     
ZTFLH:  TG172.6  
  K876.41  

Cite this article: 

WU Taotao, MENG Weiwei, BAO Zhirong, LI Yang, PAN Chunxu. Formation of Malachite Rusts on Bronze in Environments with Excess of CO2. Journal of Chinese Society for Corrosion and protection, 2014, 34(1): 82-88.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.041     OR     https://www.jcscp.org/EN/Y2014/V34/I1/82

Fig.1  Optical microscopy image (a) and SEM images (b, c) of the surface of sample I
Fig.2  XRD pattern of corrosion products of sample I
Fig.3  Raman spectra of the corrosion product of sample I: (a) 100~1700 cm-1, (b) 3200~3700 cm-1
Fig.4  Raman spectrum of the corrosion product of sample I in the range of 100~700 cm-1
Fig.5  Optical microscopy image (a) and SEM images (b, c) of the surface of sample II
Fig.6  XRD pattern of corrosion products of sample II
Fig.7  Raman spectra of the corrosion product of sample II:(a) 100~1700 cm-1, (b) 3200~3700 cm-1
Fig.8  Raman spectrum of the corrosion product of sample II in the range of 100~700 cm-1
Fig.9  Optical microscopy image (a) and SEM images (b, c) of the surface of sample III
Fig.10  XRD pattern of corrosion products of sample III
Fig.11  Raman spectra of the corrosion product of sample III: (a) 100~1700 cm-1, (b) 3200~3700 cm-1
[1] Chase T. Chinese Bronzes: Casting, Finishing, Patination and Corrosion. In: Scott D A, Podany J, Considine B, eds. Ancient and Historic Metals [M]. California, USA: The Getty Conservation Institute, 1994
[2] Robbiola L, Blengino J M, Fiaud C. Morphology and mechanisms of formation of natural patinas on archaeological Cu-Sn alloys[J]. Corros. Sci., 1998, 40(12): 2083-2111
[3] Scott D A. Copper and Bronze in Art: Corrosion, Colorants, Conservation [M]. Los Angeles: Getty Conservation Institute, 2002
[4] McCann L I, Trentelman K, Possley T, et al. Corrosion of ancient chinese bronze money trees studied by Raman microscopy[J]. J. Raman Spectrosc., 1999, 30: 121-132
[5] Li Y P, Cheng X L, Cheng Y B, et al. The corrosion testing of buried bronze atarchaeological sites[J]. Archaeol. Cult. Relics, 2006, 6: 95-98
(李艳萍, 成小林, 程玉冰等. 考古现场青铜样品土壤埋藏腐蚀实验初探[J]. 考古与文物, 2006, 6: 95-98)
[6] Hassairi H, Bousselmi L, Triki E, et al. Assessment of the interphase behaviour of two bronze alloys in archaeological soil[J]. Mater. Corros., 2007, 58(2): 121-128
[7] Li T. The corrosion study of ancient bronzes excavated from Penglai, Shandong Province [D]. Hefei: University of Science and Technology of China, 2007
(李涛. 山东蓬莱出土古代青铜器的腐蚀研究 [D]. 合肥: 中国科学技术大学, 2007)
[8] Bernardi E, Chiavari C, Lenza B, et al. The atmospheric corrosion of quaternary bronzes: the leaching action of acid rain[J]. Corros. Sci., 2009, 51: 159-170
[9] Bernardi E, Bowden D J, Brimblecombe P, et al. The effect of uric acid on outdoor copper and bronze[J]. Sci. Total Environ., 2009, 407: 2383-2389
[10] Marušić K, Otmačić-Ćurković H, Horvat-Kurbegović Š, et al. Comparative studies of chemical and electrochemical preparation of artificial bronze patinas and their protection by corrosion inhibitor[J]. Electrochim. Acta, 2009, 54: 7106-7113
[11] Novakovic J, Papadopoulou O, Vassiliou P, et al. Plasma reduction of bronze corrosion developed under long-term artificial aging[J]. Anal. Bioanal. Chem., 2009, 395: 2235-2244
[12] Wang N, He J Q, Sun S Y, et al. Bronze samples in various typical electrolytes[J]. Sci. Conserv. Archaeol., 2007, 19(4): 45-48
(王宁, 何积铨, 孙淑云等. 模拟青铜器样品在典型电解质溶液中的电化学行为研究[J]. 文物保护与考古科学, 2007, 19(4): 45-48)
[13] Souissi N, Bousselmi L, Khosrof S, et al. Electrochemical behaviour of an archaeological bronze alloy in various aqueous media: new method for understanding artifacts preservation[J]. Mater. Corros., 2003, 54: 318-325
[14] Souissi N, Bousselmi L, Khosrof S, et al. Voltammetric behaviour of an archaeological bronze alloy in aqueous chloride media[J]. Mater. Corros., 2004, 55(4): 284-291
[15] Sidot E, Souissi N, Bousselmi L, et al. Study of the corrosion behaviour of Cu-10Sn bronze in aerated Na2SO4 aqueous solution[J].Corros. Sci., 2006, 48: 2241-2257
[16] Hassairi H, Bousselmi L, Triki E. Bronze degradation processes in simulating archaeological soil media[J]. J. Solid State Electrochem., 2010, 14: 393-401
[17] Wang J L, Xu C C, Lv G C. Chemical behavior of mass transfer at the bronze/environment interface[J]. Chin. J. Mater. Res., 2004, 18(3): 244-250
(王菊琳, 许淳淳, 吕国诚. 三元青铜/环境界面上物质转移的化学行为研究[J]. 材料研究学报, 2004, 18(3): 244-250)
[18] Wang J L, Xu C C. Chemical behavior of bronze local ized corrosion in soil[J]. J. Chem. Ind. Eng.(China), 2004, 55(7): 1135-1139
(王菊琳, 许淳淳. 青铜在土壤中局部腐蚀过程的化学行为[J]. 化工学报, 2004, 55(7): 1135-1139)
[19] Wang J L, Xu C C, Lv G C. Formation of CuCl and regenerated Cu crystals on bronze surfaces in neutral and acidic media[J]. Appl. Surf. Sci., 2006, 252: 6294-6303
[20] Tang Q, Wang J L, Ma J Y. Morphology change and elements migration of bronze with high tin content after soil corrosion[J]. Chin. J. Nonferrous Met., 2011, 21(12): 3175-3181
(汤琪, 王菊琳, 马菁毓. 土壤腐蚀过程中高锡青铜的形貌变化和元素迁移[J]. 中国有色金属学报, 2011, 21(12): 3175-3181)
[21] Scott D A. Bronze disease: a review of some chemical problems and the role of relative humidity[J]. J. Am. Inst. Conserv., 1990, 29(2): 193-206
[22] Li Y, Bao Z R, Wu T T, et al. Specific corrosion product on interior surface of a bronze wine vessel with loop-handle and its growth mechanism, Shang Dynasty, China[J]. Mater. Charact., 2012, 68: 88-93
[23] Constantinides I, Adriaens A, Adams F, et al. Surface characterization of artificial corrosion layers on copper alloy reference materials[J]. Appl. Surf. Sci., 2002, 189(1/2): 90-101
[24] Frost R L, Martens W N, Rintoul L, et al. Raman spectroscopic study of azurite and malachite at 298 and 77 K[J]. J. Raman Spectrosc., 2002, 33: 252-259
[25] Bouchard M, Smith D C. Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass[J]. Spectrochim. Acta, 2003, 59A: 2247-2266
[26] Burgio L, Clark R J H. Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation[J]. Spectrochim. Acta, 2001, 57A: 1491-1521
[27] Sheng L. Study on removing the powdery rust of bronze on by oxidative obturation method [D]. Xi'an: Northwest University, 2008
(沈璐. 青铜器粉状锈氧化封闭法工艺研究 [D]. 西安: 西北大学, 2008)
[28] Sun X Q. Study on the corrosion mechanisms and the conservation of bronzes[J]. World Antiq., 2002, 53(6): 56-60
(孙晓强. 青铜器的腐蚀与保护探讨[J]. 文物世界, 2002, 53(6): 56-60)
[29] Fu H T, Li Y, Wei W J. Bronze artifacts preservation and application of AMT[J]. Corros. Sci. Prot. Technol., 2002, 14(1): 36-37
(付海涛, 李瑛, 魏无际. 古代青铜文物保护研究现状及AMT的应用[J]. 腐蚀科学与防护技术, 2002, 14(1): 36-37)
[30] Yan D F, Qin Y, Chen X, et al. Thermal analysis of the chloride in corrosion products on bronze[J]. J. Chin. Soc. Corros. Prot., 2012, 32(1): 64-66
(晏德付, 秦颍, 陈茜等. 青铜器氯化物腐蚀产物的热分析[J]. 中国腐蚀与防护学报, 2012, 32(1): 64-66)
[1] ZHANG Yifan, YUAN Xiaoguang, HUANG Hongjun, ZUO Xiaojiao, CHENG Yulin. Corrosion Behavior of Cu-Al Laminated Board in Neutral Salt Fog Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[2] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[3] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[4] JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[5] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[6] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[7] Jiale HE, Julin WANG. Impacts of Initial pH and Cl- Concentration on Nantokite Hydrolysis[J]. 中国腐蚀与防护学报, 2018, 38(4): 397-402.
[8] Mingyu BAO, Chengqiang REN, Jingsi HU, Bo LIU, Jiameng LI, Feng WANG, Li LIU, Xiaoyang GUO. Stress Induced Corrosion Electrochemical Behavior of Steels for Oil and Gas Pipes[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
[9] Xin ZHANG,Nianwei DAI,Yan YANG,Junxi ZHANG. Effect of Direct Current Electric Field on Corrosion Mechanism of Zn Exposed to Simulated Industrial Environment[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[10] Shuangqing SUN,Qifei ZHENG,Chunling LI,Xiumin WANG,Songqing HU. Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[11] Fu DONG,Yulong HU,Xin ZHAO,Zhiqiao WANG. Effect of Hydrostatic Pressure on Corrosion Behavior of 10CrNi3MoV Steel[J]. 中国腐蚀与防护学报, 2017, 37(2): 183-188.
[12] Qian HU,Jing LIU,Yukun WANG,Feng HUANG,Mingjie DAI,Yanglai HOU. Corrosion Performance of Different Zones for Weld Joint of A710 Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2016, 36(6): 611-616.
[13] Qiang BAI,Yan ZOU,Xiangfeng KONG,Yang GAO,Yan LIU,Sheng DONG. Electrochemical Corrosion Behavior in Seawater of Weld Joints of CCSE40 Steel Prepared by Underwater WetWelding with Austenitic Welding Rod[J]. 中国腐蚀与防护学报, 2016, 36(5): 427-432.
[14] Dongfang JIANG,Yang BAI,Zhongliang ZHU,Naiqiang ZHANG,Zhuonan XIAO,Hong XU. Moving Process of Corrosion Products in Steam-water System of Supercritical Power Units[J]. 中国腐蚀与防护学报, 2016, 36(4): 343-348.
[15] Di ZHANG,Ping LIANG,Yunxia ZHANG,Yanhua SHI,Hua QIN. Effect of Corrosion Product Film Formed in Artificial Solution Simulated Soil Medium at Ku'erle Area onPitting Corrosion Behavior of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2016, 36(4): 313-320.
No Suggested Reading articles found!