Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (6): 611-616    DOI: 10.11902/1005.4537.2016.184
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Performance of Different Zones for Weld Joint of A710 Steel in 3.5%NaCl Solution
Qian HU,Jing LIU(),Yukun WANG,Feng HUANG,Mingjie DAI,Yanglai HOU
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Download:  HTML  PDF(1309KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion resistance for different zones of welded joint of A710 steel was investigated by electrochemical methods, mass loss measurement, morphological observation and component analysis. Results show that the three zones of the welded joint, namely base metal (BM), heat affected zone (HAZ) and weld seam (WS), exhibit different features in microstructure. BM consists mainly of ferrite, and HAZ consists mainly of ferrite, bainite and M-A islands, while WS consists mainly of bainite and less acicular ferrite. Among others the zone of WS shows the highest electrochemical activity and average corrosion rate in 3.5%NaCl solution. After 16 d immersion, the corrosion product on WS surface is loose and lack of protection, therefore, the deeper corrosion pits and grooves were observed on the WS zone. In contrast, the corrosion products on BM and HAZ surface are compact and have better protectiveness, consequently, the substrates of BM and HAZ suffered from slighter corrosion.

Key words:  A710 steel      microstructure      ocean engineering      corrosion product     

Cite this article: 

Qian HU,Jing LIU,Yukun WANG,Feng HUANG,Mingjie DAI,Yanglai HOU. Corrosion Performance of Different Zones for Weld Joint of A710 Steel in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 611-616.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.184     OR     https://www.jcscp.org/EN/Y2016/V36/I6/611

Fig.1  Macro morphology of A710 welded joint
Fig.2  Microstructures of three zones of weldedjoint: (a) BM, (b) WM, (c) HAZ
Fig.3  Open circuit potential of three zones of welded jointafter immersion for different time
Fig.4  Average corrosion rate of three zones of welded joint after immersion for different time
Fig.5  Micro morphologies of corrosion products of BM (a, d, g), WM (b, e, h) and HAZ (c, f, i) after immersion for 1 d (a~c), 8 d (d~f) and 16 d (g~i)
Area Fe O Cu Cr Ni Si Al
BM 62.67 24.28 4.43 3.23 3.28 0.98 ---
HAZ 68.97 22.37 3.81 1.66 2.25 0.98 ---
WM 74.41 22.70 --- --- 1.93 --- 0.97
Table 1  Elements content in corrosion products of three zones of welded joint after immersion for 16 d (mass fraction / %)
Fig.6  Micro morphologies of substrates of BM (a, d, g), WM (b, e, h) and HAZ (c, f, i) after immersion for 1 d (a~c), 8 d (d~f) and 16 d (g~i)
[1] Du C W, Liu Z Y, Liang P, et al.Short-term corrosion behavior of X70 pipeline steel with different microstructure in Ku'erle soil with saturated water[J]. Heat Treat. Met., 2008, 33(6): 80
[1] (杜翠薇, 刘智勇, 梁平等. 不同组织X70 钢在库尔勒含饱和水土壤中的短期腐蚀行为[J]. 金属热处理, 2008, 33(6): 80)
[2] Di G L, Liu Z Y, Du C W, et al.Stress corrosion cracking of X70 steel with different microstructures in acid soil simulation solution[J]. Corros. Prot., 2009, 30(3): 149
[2] (翟国丽, 刘智勇, 杜翠薇等. 不同组织X70 钢在酸性土壤模拟溶液中的应力腐蚀敏感性[J]. 腐蚀与防护, 2009, 30(3): 149)
[3] Fan Z, Liu J Y, Li S L, et al.Microstructure and seawater corrosion to welding joint of X70 pipeline steel[J]. J. Southwest Petrol. Univ.(Nat. Sci.), 2009, 31(5): 171
[3] (范舟, 刘建仪, 李士伦等. X70管线钢焊接接头组织及其海水腐蚀规律[J]. 西南石油大学学报 (自然科学版), 2009, 31(5): 171)
[4] Zhou J Q, Wang H Z, Ma Q H, et al.The electrochemical impedancespectroscopy of seawater piping brass welded joint in artificial seawater[J]. Corros. Prot., 2007, 28(8): 403
[4] (周建奇, 王宏智, 马青华等. 海水管路黄铜焊接接头在人工海水中的电化学阻抗谱[J]. 腐蚀与防护, 2007, 28(8): 403)
[5] Liu Z Y, Wan H X, Li C, et al.Comparative study on corrosion of X65 pipeline steel welded joint in simulated shallow and deep sea environment[J]. J. Chin. Soc. Corros. Prot., 2014, 34(4): 321
[5] (刘智勇, 万红霞, 李禅等. X65 钢焊接接头在模拟浅表海水和深海环境中的腐蚀行为对比[J]. 中国腐蚀与防护学报, 2014, 34(4): 321)
[6] Xing Y Y, Liu Z Y, Du C W, et al.Influence of H2S concentration and pH value on corrosion behavior of weld joint of X65 subsea pipeline steel[J]. J. Chin. Soc. Corros. Prot., 2014, 34(3): 231
[6] (邢云颖, 刘智勇, 杜翠薇等. H2S浓度和pH值对X65 海管钢焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(3): 231)
[7] Huang G Q, Han B, Yang H Y.Seawater corrosion behavior of welding joints of steels for marine applications[J]. Equip. Environ. Eng., 2015, 12(4): 11
[7] (黄桂桥, 韩冰, 杨海洋. 海洋用钢焊接接头的海水腐蚀行为研究[J]. 装备环境工程, 2015, 12(4): 11)
[8] Li W F, Sun Z H, Chen Y, et al.Research on the electrochemical corrosion behaviorof carbon steel pipe welded joint[J]. Weld. Pipe Tube, 2015, 38(5): 46
[8] (李维锋, 孙紫麾, 陈英等. 碳钢管线焊接接头的电化学腐蚀行为研究[J]. 焊管, 2015, 38(5): 46)
[9] Wang B, Zhou C, Li L J, et al.Resistance to hydrogen induced corrosion cracking of weld joint of x100 pipeline steel[J]. J. Chin. Soc. Corros. Prot., 2014, 34(3): 237
[9] (王斌, 周翠, 李良君等. X100管线钢焊接接头抗HIC性能研究[J]. 中国腐蚀与防护学报, 2014, 34(3): 237)
[10] Xu L Y, Jin H Y, Cao J, et al.H2S stress corrosion investigation of pipeline steel welded joints[J]. Trans. Chin. Weld Inst., 2010, 31(1): 12
[10] (徐连勇, 荆洪阳, 曹军等. 管线钢焊接接头H2S应力腐蚀试验分析[J]. 焊接学报, 2010, 31(1): 12)
[11] Jin X J, Huo L X, Zhang Y F.The distribution of fracture toughnessof X65 pipeline steel welded joint[J]. Trans. Chin. Weld Inst.,2002, 23(6): 75
[11] (金晓军, 霍立兴, 张玉凤. X65 管线钢焊缝金属断裂韧度的统计分布[J]. 焊接学报, 2002, 23(6): 75)
[12] Wang J J, Huang F, Zhou X J, et al.Relative function of effects of alloy elements on corrosion resistance of weathering steels in marine atmosphere[J]. Corros. Prot., 2015, 36(1): 58
[12] (王晶晶, 黄峰, 周学俊等. 合金元素对耐候钢在海洋大气中耐腐蚀性影响的交互作用[J]. 腐蚀与防护, 2015, 36(1): 58)
[13] Feng H, Jiang H C, Rong L J, et al.Effect of Cu content on corrosion resistance of a high strength low alloy weathering steel[J]. Corros. Sci. Prot. Technol., 2011, 23(4): 318
[13] (封辉, 姜海昌, 戎利建等. Cu对低合金高强耐候钢耐蚀性的影响[J]. 腐蚀科学与防护技术, 2011, 23(4): 318)
[14] Liu G C, Dong J H, Han E-H, et al.Influence of Cu and Mn on corrosion behavior of low alloy steel in a simulated coastal environment[J]. Corros. Sci. Prot. Technol., 2008, 20(4): 235
[14] (刘国超, 董俊华, 韩恩厚等. Cu、Mn的协同作用对低合金钢在模拟海洋海洋大气环境中腐蚀的影响[J]. 腐蚀科学与防护技术, 2008, 20(4): 235)
[15] Hao X C, Xiao K, Zhang H Q, et al.Influence of alloying elements Cu and Cr on the corrosion resistance of weathering steels in simulated ocean atmospheric environment[J]. Corros. Prot., 2009, 42(1): 21
[15] (郝献超, 肖葵, 张汉青等. 模拟海洋大气环境下Cu和Cr对耐候钢耐腐蚀性能的影响[J]. 材料保护, 2009, 42(1): 21)
[1] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[2] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[3] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[4] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[5] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[6] HUANG Chen,HUANG Feng,ZHANG Yu,LIU Haixia,LIU Jing. Galvanic Corrosion Behavior for Weld Joint of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[7] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[8] JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[9] WEI Xinxin,ZHANG Bo,MA Xiuliang. TEM Investigation to Oxide Scale Formed on Single Crystal Alloy FeCr15Ni15 at High Temperature[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[10] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[11] FU Anqing,ZHAO Mifeng,LI Chengzheng,BAI Yan,ZHU Wenjun,MA Lei,XIONG Maoxian,XIE Junfeng,LEI Xiaowei,LV Naixin. Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[12] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[13] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[14] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[15] Kai WANG, Yaoyong YI, Qinghua LU, Jianglong YI, Zexin JIANG, Jinjun MA, Yu ZHANG. Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
No Suggested Reading articles found!