Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2013, Vol. 33 Issue (6): 491-495    DOI:
Current Issue | Archive | Adv Search |
Photo-electrochemical Study on Semiconductor Properties of Oxide Films Formed on 316L Stainless Steel in High Temperature Water
TAN Yu, LIANG Kexin, ZHANG Shenghan
School of Environment Science and Engineering, North China Electric Power University, Baoding 071000, China
Download:  PDF(733KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The semiconductor property of oxide films formed on 316L stainless steel in high temperature water was investigated by photoelectrochemical responses technique. The photocurrent spectra of the oxide film formed on 316LSS in water at 288 ℃ showed three major characteristics: a band gap energy of 2.3 eV was attributed to the presence of Fe2O3, and/or Ni(OH)2; a band gap energy of 2.9 and 3.5 eV was attributed to Cr2O3 and a band gap energy in the range of 4.1 ~ 4.4 eV was attributed to the spinel phase Fe1-xNixCr2O4. Considering the relation of the photocurrent to the applied potential, it follows that the oxide film on 316L in high temperature water indicated an n-type semiconductor. Therefore, the photoelectrochemical responses technique, with full information about the photocurrent and the dephasing angles of the oxide films,represents a sensitive and powerful way to locally analyze the various oxide phases in the oxide scale.
Key words:  photoelectrochemistry response      316L stainless steel      oxide film      semiconductor
property
      high temperature water     
Received:  28 January 2013     
ZTFLH:  O646  

Cite this article: 

TAN Yu,LIANG Kexin,ZHANG Shenghan. Photo-electrochemical Study on Semiconductor Properties of Oxide Films Formed on 316L Stainless Steel in High Temperature Water. Journal of Chinese Society for Corrosion and protection, 2013, 33(6): 491-495.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2013/V33/I6/491

[1] Olsson C-O A, Landolt D. Passive films on stainless steels-chemistry, structure and growth [J]. Electrochim. Acta, 2003, 48(9): 1093-1104
[2] Olefjord I, Wegrelius L. The influence of nitrogen on the passivation of stainless steels [J]. Corros. Sci., 1996, 38(7): 1203-1220
[3] MacDonald D D, Urquidi-Macdonald M. Theory of steady-state passive films [J]. J. Electrochem. Soc., 1990, 137(8): 2395-2402
[4] Xu J, Wu X Q, Han E-H. The evolution of electrochemical behaviour and oxide film properties of 304 stainless steel in high temperature aqueous environment [J]. Electrochim. Acta, 2012, 71(1): 219-226
[5] da Cunha Belo M, Walls M, Hakiki N E, et al. Composition,structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment [J]. Corros. Sci., 1998, 40(2/3): 447-463
[6] Mischler S, Vogel A, Mathieu H, et al. The chemical composition of the passive film on Fe-24Cr and F-24Cr-11Mo studied by AES, XPS and SIMS [J]. Corros. Sci., 1991, 32(9): 925-944
[7] Joon S K, Eun A C, Hyuk S K. Photoelectrochemical study on the passive film on Fe [J]. Corros. Sci., 2001, 43(8): 1403-1415
[8] Hee J J, Chan J P, Hyuk S K. Photoelectrochemical analysis on the passive film formed on Ni in pH 8.5 buffer solution [J]. Electrochim. Acta. 2005, 50(16/17): 3503-3508
[9] Tsuchiya H, Fujimoto S, Chihara O, et al. Semiconductive behavior of passive films formed on pure Cr and Fe-Cr alloys in sulfuric acid solution [J]. Electrochim. Acta. 2002, 47(27): 4357-4366
[10] Quarto F D, Piazza S, Sunseri C, et al. Photoelectrochemical characterization of thin anodic oxide films on zirconium metal [J]. Electrochim. Acta, 1996, 41(16): 2511-2521
[11] Carmezim M J, Sim?es A M, Montemor M F, et al. Capacitance behavior of passive films on ferritic and austenitic stainless steel [J]. Corros. Sci., 2005, 47(3): 581-591
[12] Fujimoto S, Chihara O, Shibata T. Photo electrochemical response of passive films formed on pure Cr and Fe-Cr alloys in sulphuric acid solution [J]. Mater. Sci. Forum, 1998, 289-292: 989-996
[13] Tan Y, Liang K X, Zhang S H. Semiconductor properties of the passive film formed on Ni201 in neutral solution [J]. Acta Metall. Sin., 2012, 48(8): 971-976
(檀玉, 梁可心, 张胜寒. 光电化学响应分析Ni201在中性溶液中形成表面钝化膜的半导体性质 [J]. 金属学报, 2012, 48(8): 971-976)
[14] Wouters Y, Bamba G, Galerie A, et al. Oxygen and water vapour oxidation of 15Cr ferritic stainless steels with different silicon contents [J]. Mater. Sci. Forum, 2004, 461-464: 839-848
[15] Quarto F D, Piazza S, Sunseri C. Photoelectrochemistry in corrosion studies: achievements and perspectives [J]. Mater. Sci. Forum, 1995, 192-194: 633-648
[16] Piazza S, Sperandeo M, Sunseri C, et al. Photoelectrochemical investigation of passive layers formed on Fe in different electrolytic solutions [J]. Corros. Sci., 2004, 46(4): 831-851
[17] Antonov V N, Harmon B N, Yaresko A N. Electronic structure and X-ray magnetic circular dichroism in Fe3O4 and Mn-, Co-, or Ni-substituted Fe3O4 [J]. Phys. Rev., 2003, 67(2)B: 024417-024430
[18] Quarrto F D, Romano M C, Santamaria M, et al. A semiempirical correlation between the optical band gap of hydroxides and the electronegativity of their constituents [J]. Russ. J. Electrochem., 2000, 36(1): 1203-1208
[19] Sunseri O, Piazza S, Quarto F D. Photocurrent spectroscopic investigations of passive films on chromium [J]. J. Electrochem. Soc., 1990, 137(8): 2411-2417
[20] Carpenter M K, Corrigan D A. Photoelectrochemistry of nickel hydroxide thin films electrochemical science and technology [J]. J. Eletrochem. Soc., 1989, 136(4): 1022-1026
[21] Kofstad P, Lillerud K P. On high temperature oxidation of chromium: II Properties of Cr2O3 and the oxidation mechanism of chromium [J]. J. Electrochem. Soc., 1980, 127(11): 2410-2419
[22] Young E W A, Gerretsen J H, Witt J H W. The oxygen partial pressure dependence of the defect structure of chromium (III) oxide [J]. J. Electrochem. Soc., 1987, 134(9): 2257-2260
[23] Henry S, Mougin J, Wouters Y, et al. Characterization of chromia scales grown on pure chromium in different oxidizing atmospheres [J]. Mater. High Temp., 2000, 17(2): 231-235
[24] Marchetti L, Perrin S, Wouters Y, et al. Photoelectrochemical study of nickel base alloys oxide films formed at high temperature and high pressure water [J]. Electrochim. Acta, 2010, 55(19): 5384-5392
[1] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[2] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[3] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[4] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[5] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[6] Li FENG, Ligong ZHANG, Sizhen LI, Dajiang ZHENG, Changjian LIN, Shigang DONG. Effect of Ferric Citrate on Microstructure and Corrosion Resistance of Micro-arc Oxidation Black Film on Mg-alloy AZ40M[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.
[7] Yanliang WANG,Xu CHEN,Jidong WANG,Bo SONG,Dongsheng FAN,Chuan HE. Electrochemical Behavior of 316L Stainless Steel in Borate Buffer Solution with Different pH[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[8] Jing LIU,Xiaolu LI,Chongwei ZHU,Tao ZHANG,Guanxin ZENG,Guozhe MENG,Yawei SHAO. Prediction of Critical Pitting Temperature of 316L Stainless Steel in Gas Field Environments by Artificial Neutral Network[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.
[9] Xiangbin DING,Hua SUN,Guojun YU,Xingtai ZHOU. Corrosion Behavior of Hastelloy N and 316L Stainless Steel in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2015, 35(6): 543-548.
[10] Zhiming ZHANG,Qingjiao PENG,Jianqiu WANG,En-Hou HAN,Wei KE. Stress Corrosion Cracking Behavior of Forged 316L Stainless Steel Used for Nuclear Power Plants in Alkaline Solution at 330 ℃[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
[11] CHEN Yu, CHEN Xu, LIU Tong, WANG Guanfu, WANG Yanliang. Effect of Potential on Electrochemical Corrosion Behavior of 316L Stainless Steel in Borate Buffer Solution[J]. 中国腐蚀与防护学报, 2015, 35(2): 137-143.
[12] HAI Zhengyin, WANG Hui, XIN Changsheng, CAI Min, QIN Bo, CHEN Tong. Influence of Zn Addition on Oxide Films Formed on Alloy 690 in High Temperature Water[J]. 中国腐蚀与防护学报, 2014, 34(6): 532-536.
[13] CHANG Qinpeng, CHEN Youyuan, SONG Fang, PENG Tao. Corrosion Properties of B30 Cu-Ni Alloy and 316L Stainless Steel in a Heat Pump System[J]. 中国腐蚀与防护学报, 2014, 34(6): 544-549.
[14] SHEN Zhao, ZHANG Lefu, ZHU Fawen, BAO Yichen. Corrosion Behavior of Candidate SCWR Fuel Cladding Materials[J]. 中国腐蚀与防护学报, 2014, 34(4): 301-306.
[15] NIE Yuanyuan, DUAN Jizhou, DU Min, HOU Baorong. Influence of NaN3 on Cathodic Oxygen Reduction Induced by Microbe-assisted Catalysis on Surface of 316LSS in Seawater[J]. 中国腐蚀与防护学报, 2014, 34(4): 359-365.
No Suggested Reading articles found!