Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2013, Vol. 33 Issue (5): 388-394    DOI:
Current Issue | Archive | Adv Search |
Effect of Hydrogen Charging on Stress Corrosion Cracking of X80 Pipeline Steel in Simulated Yingtan Soil Solution
MEI Huasheng, WANG Changpeng, ZHANG Wei, ZHOU Yi, YANG Yi, WANG Ling
No.59 Institute of China Ordnance Industry, Chongqing 400039, China
Download:  PDF(8871KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Stress corrosion cracking (SCC) of X80 pipeline steel after electrochemically hydrogen-charging in an artificial solution simulated the waters contained in sour soil at Yingtan district in south China was studied by means of potentiodynamic polarization curves, slow strain rate tests (SSRT) and SEM observation. The results show that X80 pipeline steel has high SCC susceptibility in the solution after hydrogen-charging and the failure mode is transgranular cracking. Moreover, the SCC susceptibility and relative plasticity losses increased with increasing electrochemical charging time, the tensile fracture surfaces exhibited a change from ductile dimple fracture to cleavage fracture. In addition, permeation of hydrogen promoted the formation of pits,and therewith pits and nonmetallic inclusions in the steel were found to play an important role for the initiation of SCC cracks.
Key words:  X80 pipeline steel      stress corrosion cracking      electrochemically hydrogen-charging      simulated soil solution     
ZTFLH:  TG172.4  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

MEI Huasheng,WANG Changpeng,ZHANG Wei,ZHOU Yi,YANG Yi,WANG Ling. Effect of Hydrogen Charging on Stress Corrosion Cracking of X80 Pipeline Steel in Simulated Yingtan Soil Solution. Journal of Chinese Society for Corrosion and protection, 2013, 33(5): 388-394.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2013/V33/I5/388

[1] Liang P, Li X G, Du C W, et al. Influence of chloride ions on the corrosion resistance of X80 pipeline steel in NaHCO3 solution [J]. J. Univ. Sci. Technol. Beijing, 2008, 30(7): 735-739
(梁平, 李晓刚, 杜翠薇等. Cl-对X80管线钢在NaHCO3 溶液中腐蚀性能的影响 [J]. 北京科技大学学报, 2008, 30(7): 735-739)
[2] Liu Z Y, Wang C P, Du C W, et al. Effect of applied potentials on stress corrosion cracking of X80 pipeline steel in simulated Yingtan soil solution [J]. Acta Metall. Sin., 2011, 47(11): 1434-1439
(刘智勇, 王长朋, 杜翠薇等. 外加电位对X80管线钢在鹰潭土壤模拟溶液中应力腐蚀行为的影响 [J]. 金属学报, 2011, 47(11): 1434-1439)
[3] Liu Z Y, Li X G, Du C W, et al. Stress corrosion cracking behavior of X70 pipe steel in an acidic soil environment [J]. Corros. Sci., 2008, 50(8): 2251-2257
[4] Zhai G L, Liu Z Y, Du C W, et al. Stress corrosion cracking of X70 steel with different microstructures in acid soil simulation solution[J]. Corros. Prot., 2009, 30(3): 149-152
(翟国丽, 刘智勇, 杜翠薇等. 不同组织X70钢在酸性土壤模拟溶液中的应力腐蚀 [J]. 腐蚀与防护, 2009, 30(3): 149-152)
[5] Liang P, Du C W, Li X G, et al. Effect of hydrogen on the stress corrosion cracking behavior of X80 pipeline steel in Ku’erle soil stimulated solution [J]. Int. J. Miner. Metall. Mater., 2009, 16(4): 407-413
[6] Xie G Y, Tang D, Zhang Y, et al. Resistance of X70 pipeline steel to sulfide stress corrosion cracking [J]. J. Chin. Soc. Corros. Prot., 2008, 28(2): 86-89
(谢广宇, 唐荻, 张雁等. X70级管线钢硫化物应力腐蚀开裂行为研究 [J]. 中国腐蚀与防护学报, 2008, 28(2): 86-89)
[7] Yao X J, Wang J Q, Zuo J H, et al. Microstructure effects on corrosion and cracking behavior of X52 pipeline steel in H2S environment [J]. J. Chin. Soc. Corros. Prot., 2012, 32(2): 96-101
(姚学军, 王俭秋, 左景辉等. 微观组织对X52钢抗H2S腐蚀和开裂性能的影响 [J]. 中国腐蚀与防护学报, 2012, 32(2): 96-101)
[8] Chu W Y, Qiao L J, Chen Q Z, et a1. Fracture and Environmental Fracture [M]. Beijing: Science Press, 2000
(褚武扬, 乔利杰, 陈奇志等. 断裂与环境断裂 [M]. 北京: 科学出版社, 2000)
[9] Ogundele G I, White W E. Some observations on corrosion of carbon steel in aqueous environments containing carbon dioxide [J]. Corrosion, 1986, 42(2): 71-78
[10] Wallinder D, Hultquist G, Tvetvn B, et al. Hydrogen in chromium: influence on corrosion potential and anodic dissolution in neutral NaCl solution [J]. Corros. Sci., 2001, 43(7): 1267-1281
[11] Glass G K, Hassanein A M, Buenfeld N R. Obtaining impedance information on the steel-concrete interface [J]. Corrosion, 1998, 54(11): 887-897
[12] Hamadou L, Kadri A, Benbrahim N. Characterisation of passive film formed on low carbon steel in borate buffer solution by electrochemical impedance spectroscopy [J]. Appl. Surf. Sci., 2005, 252(5): 1510-1519
[13] Fan L, Li X G, Du C W, et al. Rlectrochemical behavior of passive films formed on X80 pipeline steel in various concentrated NaHCO3 solutions [J]. J. Chin. Soc. Corros. Prot., 2012, 32(4): 323-326
(范林, 李晓刚, 杜翠薇等. X80管线钢钝化膜在各种高浓度NaHCO3溶液中的电化学行为 [J]. 中国腐蚀与防护学报, 2012, 32(4): 323-326)
[14] Yang Q, Qiao L J, Chiovelli S, et al. Effects of hydrogen on pitting susceptibility of type 310 stainless steel [J]. Corrosion, 1998, 54(8): 628-633
[15] Qiao L J, Luo J L. Hydrogen-facilitated anodic dissolution of austenitic stainless steels [J]. Corrosion, 1998, 54(4): 281-288
[16] Zhao W M, Wang Y, Xue J, et al. Corrosion mechanism of high velocity oxy-fuel sprayed nicrbsi coatings [J]. J. Xi'an Jiaotong Univ., 2004, 38(3): 286-290
(赵卫民, 王勇, 薛锦等. NiCrBSi超音速火焰喷涂层的电化学腐蚀机制 [J]. 西安交通大学学报, 2004, 38(3): 286-290)
[17] Wang Y B, Wang S, Yan L W. The effects of plastic deformation on hydrogen induced cracking [J]. J. Chin. Soc. Corros. Prot., 2000, 20(4): 248-252
(王燕斌, 王胜, 颜练武. 塑性变形在氢致断裂中的作用 [J]. 中国腐蚀与防护学报, 2000, 20(4): 248-252)
[18] Zhang L, Li X G, Du C W, et al. Effects of applied potentials on stress corrosion cracking of X70 pipeline steel in simulated Ku'erle soil solution [J]. J. Chin. Soc. Corros. Prot., 2009, 29(5): 353-359
(张亮, 李晓刚, 杜翠薇等. 外加电位对X70管线钢在库尔勒土壤模拟溶液中应力腐蚀开裂敏感性的影响 [J]. 中国腐蚀与防护学报, 2009, 29(5): 353-359)
[1] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[4] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[6] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[7] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[8] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[9] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[10] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[11] Jidong REN,Rongjie GAO,Yu ZHANG,Yong LIU,Tian DING. Fabrication of Amphiphobic Surface of Pipeline Steel by Acid Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2017, 37(3): 233-240.
[12] Kangnan ZHANG,Ming WU,Fei XIE,Dan WANG,Yuxi SAN,Feng JIANG. Effect of Magnetic Field on Corrosion of X80 Pipeline Steel in Meadow Soil at Shenyang Area[J]. 中国腐蚀与防护学报, 2017, 37(2): 148-154.
[13] Naiqiang ZHANG,Guoqiang YUE,Fabin LV,Qi CAO,Mengyuan LI,Hong XU. Crack Growth Rate of Stress Corrosion Cracking of Inconel 625 in High Temperature Steam[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[14] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[15] Di ZHANG,Ping LIANG,Yunxia ZHANG,Yanhua SHI,Hua QIN. Effect of Corrosion Product Film Formed in Artificial Solution Simulated Soil Medium at Ku'erle Area onPitting Corrosion Behavior of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2016, 36(4): 313-320.
No Suggested Reading articles found!