Please wait a minute...
J Chin Soc Corr Pro  2011, Vol. 31 Issue (4): 282-288    DOI:
Research Articles Current Issue | Archive | Adv Search |
CORROSION MECHANISM ON TOP SURFACE OF FRICTION STIR WELDED JOINT OF 2024 ALUMINUM ALLOY
KANG Ju1, DONG Chunlin1, LUAN Guohong1,HE Miao1, FU Ruidong2
1. Beijing Aeronautical Manufacturing Technology Research Institute, China FSW Center, Beijing 100024
2. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004
Download:  PDF(4832KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In this paper, based on the analysis to surface microstructure of FSW AA2024 joint, the corrosion evolution behavior was revealed by a quasi-in-situ observation method. Besides, the corrosion mechanism of the FSW joint was investigated by combining TEM, DSC and electrochemical analysis. The results show that FSW makes the corrosion resistance decrease, which is characterized by the facts that the most corrosion in the SAZ (shoulder active zone) and the pitting corrosion initially originates in dissolving of the $S$ phase (Al2CuMg). TEM observations indicate that crystal defects density increases in the welded joints causing the more different electrochemical properties between grains and grain boundaries. The S phase particles are broken and partially redissolved during the FSW process in the SAZ. When the corrosion happens, the broken S phase particles increase the pitting corrosion density of the SAZ. In addition, the activity of the SAZ is enhanced due to the doped Mg.
Key words:  friction stir welding      2024 aluminum alloy      microstructure      immersion test      second-phase precipitates     
Received:  11 June 2010     
ZTFLH: 

TG172

 
Corresponding Authors:  KANG Ju     E-mail:  kangjusin@163.com

Cite this article: 

KANG Ju, DONG Chunlin, LUAN Guohong,HE Miao, FU Ruidong. CORROSION MECHANISM ON TOP SURFACE OF FRICTION STIR WELDED JOINT OF 2024 ALUMINUM ALLOY. J Chin Soc Corr Pro, 2011, 31(4): 282-288.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2011/V31/I4/282

[1] Matrukanitz R P. Selection and weldability of heat-treatable aluminum alloys, ASM Handbook-Welding, Brazing and Soldering [M]. ASM Int., 1990: 528-536

[2] Thomas W M, Nicholas E D, Needham J C, et al. Friction stir butt welding [P].Int. Pat., PCT/GB92/02203, 1991, 9

[3] Ericsson M, Sandstrom R. Influence of welding speed on the fatigue of friction stir welds and comparison with MIG and TIG [J]. Int. J. Fatigue, 2003, 25: 1379-1387

[4] Su J Q, Nelson T W, Mishra R, et al.Microstructural investigation of friction stir welded 7050-T651 aluminum [J]. Acta Mater., 2003, 51(3): 713-729

[5] Omar H. Effects of peening on mechanical properties in friction stir welded 2195 aluminum alloy joints [J]. Mater. Sci.Eng., 2008, A492(1-2): 168-176

[6] Linton V M, Ripley M I. Influence of time on residual stresses in friction stir welds in age hardenable 7xxx aluminum alloys [J]. Acta Mater., 2008, 56(16): 4319-4327

[7] Li Y, Murr L E, McLure J C. Solid-state flow visualization in the friction-stir welding of 2024 Al to 6061 Al [J]. Scr.Mater., 1999, 40(9): 1041-1046

[8] Yan D Y, Shi Q Y, Wu A P, et al. Numerical analysis on the functions of stir tool's mechanical load during friction stir welding [J]. Acta Metall.Sin., 2009, 45(8): 994-999

    (鄢东洋, 史清宇, 吴爱萍等. 搅拌头机械载荷在搅拌摩擦焊接过程中的作用的数值分析 [J]. 金属学报, 2009, 45(8): 994-999)

[9] Jariyaboon M, Davenport A J, Ambat R, et al. The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024-T351 [J]. Corros. Sci.,2007, 49(2): 877-909

[10] Biallas G, Braun R, Donne C D, et al. Mechanical properties and corrosion behavior of friction stir welded 2024-T3 [C].1st International Symposium on Friction Stir Welding, Thousand Oaks, CA, 1999

[11] Leonard A J. Corrosion resistance of friction stir welds in aluminum alloy 2014A-T651 and 7075-T651 [A], 3rd International Symposium on Friction Stir Welding [C]. Kobe, Japan.2001

[12] Li J F, Zheng Z J, Zhang Z, et al. Electrochemical impedance spectroscopy of Al alloys during exfoliation corrosion [J].J. Chin. Soc. Corros. Prot., 2005,25(1): 48-52

     (李劲风, 郑子樵, 张昭等. 铝合金剥落过程的电化学阻抗谱分析 [J]. 中国腐蚀与防护学报, 2005, 25(1): 48-52)

[13] Zhang D F, Tan X M, Ma L, et al. Aluminum pitting corrosion damage rule under service environment [J]. J. Chin.Soc. Corros. Prot., 2010, 30(1): 93-96

     (张丹峰, 谭晓明, 马力等. 服役环境条件下飞机结构铝合金材料孔蚀规律研究 [J]. 中国腐蚀与防护学报, 2010, 30(1): 93-96)

[14] Mishra R S, Ma Z Y. Friction stir welding and processing [J]. Mater.Sci. Eng., 2005, R50: 1-78

[15] Pan C, Huang Y, Fu Q. A novel in-situ tracking approach for evaluating microstructural variations using SEM, EDS and EBSD and its applications in materials science [J]. Mod. Res. Educ.Topics Microsc., 2007, 697-703

[16] ASTM G34-01. Standard test method for exfoliation corrosion susceptibility in 2××× and 7××× series aluminum alloys (EXCO Test) [S]. 2007

[17] Habashi M, Bonte E, Galland J, et al. Quantitative measurements of the degree of exfoliation on aluminum alloys [J]. Corros. Sci., 1993, 35(1-4): 169-183

[18] Fu R D, Luan G H, Dong C L, et al. Corrosion behavior of friction stir welded joint of 7075 aluminum alloy by acid salt spray [J]. Corros. Sci. Prot.Technol., 2009, 21: 580-585

     (付瑞东, 栾国红, 董春林等. 酸性盐雾中7075铝合金FSW接头的腐蚀行为 [J]. 腐蚀科学与防护技术, 2009; 21: 580-585)

[19] Buchheit R G, Grant R P, Hlava P F, et al. Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024-T3 [J].J. Electrochem. Soc, 1997, 144(8): 2621-2628

[20] Cheng Y L, Zhang Z, Cao F H, et al. Corrosion of LY12 aluminum alloy in sodium chloride solution [J]. Trans. Nonferrous Met. Soc. China, 2003, 13(3): 617-621

[21] Liu Z Y, Li Y T, Liu Y B, et al.Development of Al-Cu-Mg-Ag alloys [J]. Chin.J. Nonferrous Met., 2007, 17(12): 1905-1915

     (刘志义, 李云涛, 刘延斌等. Al-Cu-Mg-Ag合金析出相的研究进展 [J]. 中国有色金属学报, 2007, 17(12): 1905-1915)
[1] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[2] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[3] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[4] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[5] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[6] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[7] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[8] WEI Xinxin,ZHANG Bo,MA Xiuliang. TEM Investigation to Oxide Scale Formed on Single Crystal Alloy FeCr15Ni15 at High Temperature[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[9] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[10] FU Anqing,ZHAO Mifeng,LI Chengzheng,BAI Yan,ZHU Wenjun,MA Lei,XIONG Maoxian,XIE Junfeng,LEI Xiaowei,LV Naixin. Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[11] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[12] Kai WANG, Yaoyong YI, Qinghua LU, Jianglong YI, Zexin JIANG, Jinjun MA, Yu ZHANG. Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[13] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[14] Yue LI, Jian WANG, Yong ZHANG, Jingang BAI, Yadi HU, Yongfeng QIAO, Caili ZHANG, Peide HAN. Analysis of Initial Oxidation Process of 2205 Duplex Stainless Steel in Closed Container at High Temperature[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[15] Guangrui JIANG, Guanghui LIU. Microstructure and Corrosion Resistance of Solidified Zn-Al-Mg Alloys[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
No Suggested Reading articles found!