Please wait a minute...
J Chin Soc Corr Pro  2010, Vol. 30 Issue (5): 347-353    DOI:
Research Articles Current Issue | Archive | Adv Search |
STRESS CORROSION CRACKING BEHAVIORS OF AS-CAST AZ91 MAGNESIUM ALLOY IN CO32-/HCO3- SOLUTIONS
HUANG Fa, CHEN Jian, WANG Jianqiu
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Download:  PDF(3305KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The stress corrosion cracking (SCC) behaviors of as-cast AZ91 magnesium alloy in CO32-/HCO3- solutions were investigated by electrochemical test, immersion test and slow strain rate test (SSRT) respectively. The results showed that the stress corrosion cracking sensitivity of as-cast AZ91 alloy in CO32-/HCO3- solutions decreased with the increase of pH values of the solutions. The surface was covered by a film mainly composed of Mg(OH)2 and Al(OH)3. Al(OH)3 could be dissolved in alkaline solutions and AlO2- engendered. Pitting was the main crack source of AZ91 alloy in such solutions. The cracking of β phase also resulted in microcracks in the matrix. Microcracks initiating at the bottom of pitting combined into a main crack. The main crack propagated by coalescence of the existing microcracks ahead until the SCC fracture occurred.
Key words:  AZ91 magnesium alloy      stress corrosion cracking      CO32-/HCO3- solution     
Received:  28 September 2009     
ZTFLH: 

TG172.6

 
Corresponding Authors:  WANG Jianqiu     E-mail:  wangjianqiu@imr.ac.cn

Cite this article: 

HUANG Fa, CHEN Jian, WANG Jianqiu. STRESS CORROSION CRACKING BEHAVIORS OF AS-CAST AZ91 MAGNESIUM ALLOY IN CO32-/HCO3- SOLUTIONS. J Chin Soc Corr Pro, 2010, 30(5): 347-353.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2010/V30/I5/347

[1] Liu Z, Zhang K, Zeng X Q. Theory and Application of Mg-based Light Alloy [M]. Beijing: China Machine Press, 2002     (刘正, 张奎, 曾小勤. 镁基轻质合金理论基础及其应用 [M].北京:机械工业出版社, 2002) [2] Wang F P, Li X G, Lin C, et al.Atmospheric corrosion behavior of AZ91D magnesium alloy in Beijing area [J]. J. Chin. Soc. Corros. Prot., 2004, 24(6): 345-349     (王凤平, 李晓刚, 林翠等. AZ91D 镁合金在北京地区的大气腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2004, 24(6): 345-349) [3] Lin C, Li X G. Initial corrosion of AZ91D magnesium alloy in atmosphere containing SO2 [J]. Chin. J. Nonferrous Met., 2004,14(10): 1658-1665     (林翠, 李晓刚. AZ91D 镁合金在含 SO2大气环境中的初期腐蚀行为 [J]. 中国有色金属学报, 2004, 14(10): 1658-1665) [4] Chen J, Wang J Q, Han E H, et al. Effects of dust and salt particles on the formation and spreading of micro-droplets [J].Corros. Sci., 2008, 50 (5): 1449-1459 [5] Chen J, Wang J Q, Han E H,et al. In situ  observation of the formation and spreading of micro-droplets on magnesium and its alloys under wet-dry condition [J]. Corros. Sci., 2007, 49(3): 1625-1634 [6] Wu Z N, Li P J, Liu S X, et al. The actuality of study in magnesium corrosion [J]. Foundry,2001, 50(10): 583-586     (吴振宁, 李培杰, 刘树勋等. 镁合金腐蚀问题研究现状 [J]. 铸造, 2001, 50(10): 583-586) [7] Chen J, Wang J Q, Han E H, et al. Corrosion behavior of AZ91D magnesium alloy in sodium sulfate solution [J]. Mater. Corros.,2005, 57(10): 789-793 [8] Chen J, Wang J Q, Han E H, et al. Effect of hydrogen on stress corrosion cracking of magnesium alloy in 0.1 M Na2SO4 solution [J]. Mater. Sci. Eng., 2008, A 488(1-2): 428-434 [9] Gulbrandsen E. Anodic behaviour of Mg in HCO3-/CO32- buffer solutions. Quasi-steady measurements [J]. Electrochem.Acta, 1992, 37(8): 1403-1412 [10] Vermilyea D A, Kirk C F. Study of inhibition of magnesium corrosion [J]. J. Electrochem. Soc., 1969, 116(11): 1487-1492 [11] Fairman L, West J M. Stress corrosion cracking of a magnesium aluminium alloy [J]. Corros. Sci., 1965, 5(10): 711-716 [12] Chen J, Wang J Q, Han E H, et al. States and transport of hydrogen in the corrosion process of AZ91 magnesium alloy in aqueous solution [J]. Corros. Sci., 2008, 50(5): 1292-1305 [13] Pourbaix M. Atlas d' Equilibres Electrochimiques [M]. Paris: Gauthier Villars, 1963 [14] Song G L. Corrosion and Protection of Magnesium Alloy [M]. Beijing: Chemical Industry Press, 2006         (宋光铃. 镁合金腐蚀与防护 [M]. 北京:化学工业出版社, 2006) [15] Lide D R. Handbook of Chemistry and Physics [M]. CRC press, 2003 [16] Zhang X Y. Handbook of Practical Chemistry [M]. Beijing: National Defense Industry Press, 1986      (张向宇. 实用化学手册 [M]. 北京:国防工业出版社, 1986)
[1] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[4] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[5] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[6] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[7] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[8] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[9] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[10] Naiqiang ZHANG,Guoqiang YUE,Fabin LV,Qi CAO,Mengyuan LI,Hong XU. Crack Growth Rate of Stress Corrosion Cracking of Inconel 625 in High Temperature Steam[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[11] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[12] Yueling GUO,En-Hou HAN,Jianqiu WANG. Effect of Post-forging Heat Treatment on Stress Corrosion Cracking of Nuclear Grade 316LN Stainless Steel in Boiling MgCl2 Solution[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
[13] Zhiming ZHANG,Qingjiao PENG,Jianqiu WANG,En-Hou HAN,Wei KE. Stress Corrosion Cracking Behavior of Forged 316L Stainless Steel Used for Nuclear Power Plants in Alkaline Solution at 330 ℃[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
[14] SHI Xianbo, WANG Wei, YAN Wei, SHAN Yiyin, YANG Ke. Effect of Martensite/Austenite (M/A) Constituent on H2S Resistance of High Strength Pipeline Steels[J]. 中国腐蚀与防护学报, 2015, 35(2): 129-136.
[15] PAN Taijun, WANG Tao. Corrosion Performance and Preparation of Polyaniline Film on the Surface of AZ91 Magnesium Alloy[J]. 中国腐蚀与防护学报, 2014, 34(6): 489-494.
No Suggested Reading articles found!