Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (6): 489-494    DOI: 10.11902/1005.4537.2013.212
Current Issue | Archive | Adv Search |
Corrosion Performance and Preparation of Polyaniline Film on the Surface of AZ91 Magnesium Alloy
PAN Taijun1,2(), WANG Tao1
1. School of Material Science and Engineering, Changzhou University, Changzhou 213164, China
2. Jiangsu Key Laboratory of Material Surface Technology, Changzhou University, Changzhou 213164, China
Download:  HTML  PDF(1893KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Polyaniline (Pani) film was applied onto AZ91 magnesium alloy in aqueous solutions containing oxalic acid and aniline monomer by cyclic voltammetry (CV) technique, which then was characterized by means of IR and SEM technique. Furthermore, the corrosion performance of the coating was evaluated in 3.5%NaCl solution through examining the polarization curves, open circuit potential versus time and the electrochemical impedance spectroscopy (EIS). The results indicated that the Pani coating could effectively shift the free corrosion potential much positively for the coated AZ91 magnesium and led to significantly diminish its corrosion current density by two orders of magnitude. Long-term immersion experiments indicated that the Pani coating can effectively hinder the permeation of corrosive species toward matrix, thereby prevent AZ91 magnesium alloy from corrosion.

Key words:  polyaniline      cyclic voltammerty      corrosion      AZ91 magnesium alloy     
ZTFLH:  O646  
  TG174.4  

Cite this article: 

PAN Taijun, WANG Tao. Corrosion Performance and Preparation of Polyaniline Film on the Surface of AZ91 Magnesium Alloy. Journal of Chinese Society for Corrosion and protection, 2014, 34(6): 489-494.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.212     OR     https://www.jcscp.org/EN/Y2014/V34/I6/489

Fig.1  FT-IR spectrum of the Pani coating
Fig.2  Surface morphologies of the Pani coating prepared by Cyclic-Voltammetry (a) and immersed for 160 h in 3.5%NaCl solution (b)
Fig.3  Polarization curves of the Pani-coated and the bare AZ91 magnesium alloy after immersion in 3.5% NaCl solution for 0.5 h
Sample Ecorr
mV
icorr
Acm-2
Vcorr
mma-1
βa
mV
βc
mV
Rp
Ωcm2
Blank AZ91 -1307 3.29×10-4 12.7 394.8 530.6 299
Coated AZ91 -699.5 9.38×10-6 0.72 519.3 10253 16299
Table 1  Fitted electrochemical parameters of polarization curves
Fig.4  Open circuit potential versus time curves for the bare and the Pani-coated AZ91 magnesium alloy in 3.5%NaCl solution
Fig.5  Nyquist (a) and Bode (b) plots for AZ91 magnesium alloy after immersion in 3.5%NaCl solution for different time
Time / h Rs / Ωcm2 Ysl / Ω-1cm-2S-n nsl Rpo / Ωcm2 Ydl / Ω-1cm-2S-n ndl Rct / Ωcm2 L / Hcm2 Rl / Ωcm2
0.25 3.49 2.92×10-6 0.70 8.38 5.79×10-6 1 95.53 17.75 21.08
1 4.65 2.88×10-6 0.74 11.00 8.15×10-6 0.98 205.30 41.67 137.90
5 5.44 4.17×10-6 0.79 14.10 2.97×10-5 0.95 569.10 952.80 330.20
8 4.43 6.63×10-6 0.75 7.39 4.58×10-5 0.93 519.60 3675 1210
12 4.78 1.49×10-5 0.68 6.61 5.02×10-5 0.94 400.50 542.90 823.10
20 4.36 3.30×10-6 0.83 4.69 3.42×10-5 0.99 259.90 374.90 292.80
Table 2  Fitted results of impedance spectra for AZ91 magnesium alloy after corrosion for various time in 3.5%NaCl solution
Times / h Rs / Ωcm2 Yo-f / Ω-1cm-2S-n nf Rf / Ωcm2 Yo-dl / Ω-1cm-2S-n ndl Rt / Ωcm2
0.25 25.89 4.26×10-4 0.740 476.60 1.93×10-3 0.740 102.7
1 23.26 2.81×10-4 0.630 906.80 9.88×10-4 0.820 163.5
10 21.91 1.82×10-4 0.720 1965 1.42×10-4 0.732 676.9
30 30.35 9.97×10-5 0.840 1.45×10-4 2.63×10-5 0.780 1777
80 26.46 6.25×10-5 0.724 3.25×10-4 3.22×10-4 0.820 2916
120 31.74 4.03×10-5 0.730 5.09×10-4 4.75×10-5 0.690 7033
144 28.47 1.32×10-5 0.680 3967 6.78×10-4 0.710 6689
160 26.21 2.21×10-4 0.600 37.98 7.98×10-4 0.720 3938
Table 3  Fitted results of impedance spectra for Pani-coated AZ91 magnesium alloy after corrosion for varioustime in 3.5%NaCl solution
Fig.6  Equivalent circuits for AZ91 magnesium alloy with (a) or without (b) Pani coating
Fig.7  Nyquist (a) and Bode (b) plots for the Pani coating after immersion in 3.5%NaCl solution for various time
[1] Song G L. Corrosion and Protection of Magnesium Alloys[M]. Beijing: Chemical Industry Press, 2006
(宋光铃. 镁合金腐蚀与防护[M]. 北京: 化学工业出版社, 2006)
[2] de Berry D W. Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating[J]. J. Electrochem. Soc., 1985, 132(5): 1022-1026
[3] Andreia R, Carla G C, Brett M A. Polyphenazine films as inhibitors of copper corrosion[J]. J. Electro. Chem., 2013, 688(1): 282-288
[4] Xu G R, Yi Q F, Zhou G X, et al. Preparation and corrosion resistance of conductive polyaniline coating on aluminum by electropolymerization[J]. J. Chin. Soc. Corros. Prot., 2008, 28(1): 11-15
(徐国荣, 易清风, 周光喜等. 铝基体上电沉积聚苯胺膜及其耐蚀性[J]. 中国腐蚀与防护学报, 2008, 28(1): 11-15)
[5] Zhang Y J, Feng T, Shao Y W, et al. Effect of pani/epoxy coating on the corrosion resistance of AZ91D magnesiu alloy[J]. J. Chin. Soc. Corros. Prot., 2010, 30(4): 284-289
(张颖君, 冯涛, 邵亚薇等. 聚苯胺/环氧涂层对 AZ91D 镁合金耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(4): 284-289)
[6] Truong V T, Lai P K, Moore B T, et al. Corrosion protection of magnesium by electroactive polypyrroler/paint coatings[J]. Synth. Met.2000, 110: 7-15
[7] Guo X W, Jiang Y F, Zhai C Q, et al. Preparation of even polyaniline film on magnesium alloy by pulse potentiostatic method[J]. Synth. Met., 2003, 135: 169-170
[8] Jiang Y F, Bao Y F, Yang S Z, et al. Corrosion protection of polyaniline on magnesium alloy[J]. Surf. Technol., 2006, 35(6): 19-21
(蒋永锋, 包晔峰, 杨顺贞等. 镁合金表面聚苯胺膜层防腐性能的研究[J]. 表面技术, 2006, 35(6): 19-21)
[9] Peng X Y, Luan F, Liu X X, et al. pH-controlled morphological structure of polyaniline during electrochemical deposition[J]. Electrochim. Acta, 2009, 54: 6172-6177
[10] Zhang Q H, Wang X H, Jing X B. Sytnhessi of polyaniline and its spcetra properties[J]. Chem. World, 2001, (5): 242-244
(张清华, 王献红, 景遐斌. 聚苯胺的合成及光谱特征[J]. 化学世界, 2001, (5): 242-244)
[11] Wang Y, Northwood D O. An investigation into TiN-coated 316L stainless steel as a bipolar plate material for PEM fuel cells[J]. J. Power Sources, 2007, 165: 293-298
[12] Cao C N,Zhang J Q. Introduction of Electrochemical Impedance Spectroscopy[M]. Beijing: Science Press, 2002: 26-177
(曹楚南,张鉴清. 电化学阻抗谱导论[M]. 北京:科学出版社,2002: 26-177)
[1] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[3] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[4] QIAO Jisen, XIA Zonghui, LIU Libo, XU Jiamin, LIU Xudong. Corrosion Resistance of Aluminum-magnesium Bimetal Composite Material Prepared by Isothermal Indirect Extrusion[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[5] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[6] GE Pengli, ZENG Wenguang, XIAO Wenwen, GAO Duolong, ZHANG Jiangjiang, LI Fang. Effect of Applied Stress and Medium Flow on Corrosion Behavior of Carbon Steel in H2S/CO2 Coexisting Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[7] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[8] ZHANG Yifan, YUAN Xiaoguang, HUANG Hongjun, ZUO Xiaojiao, CHENG Yulin. Corrosion Behavior of Cu-Al Laminated Board in Neutral Salt Fog Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[9] JIANG Bochen, CAO Jiangdong, CAO Xueyu, WANG Jiantao, ZHANG Shaopeng. Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[10] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[11] LUAN Hao, MENG Fandi, LIU Li, CUI Yu, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Preparation and Anticorrosion Performance of M-phenylenediamine-graphene Oxide/Organic Coating[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[12] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[13] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[14] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[15] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
No Suggested Reading articles found!