Please wait a minute...
J Chin Soc Corr Pro  2010, Vol. 30 Issue (3): 207-212    DOI:
Research Articles Current Issue | Archive | Adv Search |
SAMS OF DODECYL MERCAPTAN AND ITS CORROSION PROTECTION ON IRON SURFACE
WANG Jing, LI Degang, YU Xianjin, DONG Yunhui, ZHANG Lipeng
School of Chemical Engineering, Shandong University of Technology,Zibo 255049
Download:  PDF(770KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Self-assembled monolayers (SAMs) of n-and t-dodecyl mercaptan were prepared on iron surface by self-assembly methods. From the results of FT-IR, it can be found that both the n-and t-dodecyl mercaptan can self-assemble on the surface of iron. Then the electrochemical impedance spectroscopy (EIS) and the Tafel polarization curves were performed to characterize the anticorrosion capability of the SAMs in 0.5 mol/L NaCl solution. The general equivalent circuits for the n-and t-dodecyl mercaptan SAMs were established. Based on the results of the EIS, proper equivalent circuit was chosen to fit the Nyquist impedance plots. The inhibition efficiency (IE) of the SAMs on iron corrosion have been calculated according to the fitted results and the Tafel polarization curves. When the iron electrode self-assembled in the n-and t-dodecyl mercaptan for 3h, the IE of the SAMs can reach about 89% and 80% respectively. Comparing with the SAMs of the t-dodecyl mercaptan, the SAMs of n-dodecyl mercaptan have more effective corrosion inhibition for iron as indicated by the high charge-transfer resistance shown in EIS and the positive corrosion potential in the Tafel polarization curves. It is quite possible that the steric hindrance of t-dodecyl mercaptan is bigger than that of n-dodecyl mercaptan. Therefore, it is easy to understand that the quality of the n-dodecyl mercaptan SAMs is better than that of the t-dodecyl mercaptan.

Key words:  Fe      n-and t-dodecyl mercaptan      self-assembled monolayer(SAM)      inhibitor efficiency     
Received:  06 January 2009     
ZTFLH: 

O646.6

 
Fund: 

;National Natural Science Foundation of China;National Natural Science Foundation of China

Corresponding Authors:  LI Degang     E-mail:  ldg@sdut.edu.cn

Cite this article: 

WANG Jing, LI Degang, YU Xianjin, DONG Yunhui, ZHANG Lipeng. SAMS OF DODECYL MERCAPTAN AND ITS CORROSION PROTECTION ON IRON SURFACE. J Chin Soc Corr Pro, 2010, 30(3): 207-212.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2010/V30/I3/207

[1] Cometto F P, Paredes-Olivera P, Macagno V A, et al. Density functional theory study of the adsorption of alkanethiols on Cu(111), Ag(111), and Au(111) in the low and high coverage regimes [J]. J. Phys. Chem., 2005, 109(46): 21737-21748
[2] Muller-Meskamp L, Lussem B, Muller L, et al. A new phase of the c(4~2) superstructure of alkanethiols grown by vapor phase deposition on gold [J]. Langmuir, 2005, 21(12):5256-5258
[3] Kong D S, Wan L J, Chen S H, et al. Progress in STM study of corrosion inhibitor self-assembled monolayers (SAMs) on metals II. corrosion inhibitor SAMs on engineering metals [J]. Corros. Prot.,2003, 24(12): 507-512
  (孔德生, 万立骏, 陈慎豪等. 金属表面缓蚀剂自组装单分子膜的STM研究进展. Ⅱ. 常用金属表面的缓蚀剂自组装单分子膜 [J]. 腐蚀与防护, 2003,24(12): 507-512
[4] Bain C D, Troughton E B, Tao Y T, et al. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold [J]. J. Am. Chem. Soc, 1989, 111(1):321-335
[5] Finklea H O, Avery S, Lynch M, et al. Blocking oriented monolayers of alkyl mercaptans on gold electrodes [J]. Langmuir, 1987, 3(22):409-413
[6] Laibinis P E, Whitesides G M, Allara D L, et al. Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold [J]. J. Am. Chem. Soc, 1991, 113(19):7152-7167
[7] Li D G, Yu X J, Dong Y H. The different self-assembled way of n-and t-dodecyl mercaptan on the surface of copper [J]. Appl. Surf. Sci, 2007, 253:4182-4187
[8] Shimazu K, Yagi I, Sato Y, et al. Packing state and stability of self-assembled monolayers of 11-ferrocenyl-1-undecanethiol on platinum electrodes [J]. Chem. Soc.Jpn, 1994, 67(3):863-865
[9] Volmer-Uebing M, Reynders B,Stratmann M. Anbindungsverhalten organischer monomere auf eisenoberfl chen und korrosion der durch die anbindung chemisch modifizierten oberfl chen [J]. Werkst. Korros, 1991, 42(1):19-34
[10] Nozawa K, Nishihara H, Aramaki K. Chemical modification of alkanethiol monolayers for protection iron against corrosion [J]. Corros. Sci, 1997, 39(9):1625-1639
[11] Barcia O E, Mattos O R,Pebere N, et al. Mass-transport study for the electrodissolution of copper in 1M hydrochloric acid solution by impedance [J]. J.Electrochem. Soc, 1993, 140(10):2825-2833
[12] Ma H Y, Chen S H, Niu L, et al. Studies on electrochemical behavior of copper in aerated NaBr solutions with Schiff base N,N'-o-phenylen-bis(3-methoxysalicylidenimine) [J]. J. Electrochem.Soc., 2001, 148(5): B208-B216
[13] Ma H Y, Yang C, Chen S H, et al. Electrochemical investigation of dynamic interfacial processes at 1-octadecanethiol-modified copper electrodes in halide-containing solutions [J]. Electrochim. Acta, 2003, 48(28):4277-4289
[14] Zamborini F P, Crooks R M. Corrosion passivation of gold by n-alkanethiol self assembled monolayers: effect of chain length and end group [J]. Langmuir, 1998, 14(12):3279-3286
[15] Li J H. Electrochemistry of Self-assembled Monolayers [M].Beijing: Higher Education Press, 1996
[16] (李景虹. 自组装膜电化学 [M]. 北京: 高等教育出版社, 1996)
[17] Cao C N. Corrosion Electrochemistry [M]. Beijing:Chemical Industry Press, 2004
[18] (曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2004)
[19] Jenings G K, Munro J C, Yong T H, et al. Effect of chain length on the protection of copper by n-alkanethiols [J]. Langmuir, 1998, 14(21):6130-6139
[20] Deflorian F, Fedrizzi L, Locaspi A, et al. Testing of corrosion resistant fluoropolymer coatings [J]. Electrochim. Acta, 1993, 38(14):1945-1950
[21] Quan Z L, Chen S H, Li Y, et al. Adsorption behaviour of Schiff base and corrosion protection of resulting films to copper substrate [J]. Corros. Sci, 2002, 44:703-715
[1] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[2] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[3] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[4] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[5] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[6] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[7] XU Congmin,LUO Lihui,WANG Wenyuan,ZHAO Miaomiao,TIAN Yongqiang,SONG Pengdi. Enhancing Sterilization Effect of Bactericide by D-tyrosine to Iron Bacterial Biofilm on Carbon Steel Surface[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[8] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[9] WEI Xinxin,ZHANG Bo,MA Xiuliang. TEM Investigation to Oxide Scale Formed on Single Crystal Alloy FeCr15Ni15 at High Temperature[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[10] Junjie XIA,Hongzhi NIU,Min LIU,Huazhen CAO,Guoqu ZHENG,Liankui WU. Enhancement of High Temperature Oxidation Resistance of Ti48Al5Nb Alloy via Anodic Anodization in NH4F Containing Ethylene Glycol[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[11] Tong LIAO,Zheng MA,Leilei LI,Xiumin MA,Xiutong WANG,Baorong HOU. Light-generated Cathodic Protection Properties of Fe2O3/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[12] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[13] Jiapeng LIAO,Xinqiang WU. Review of Notch Effect on Fatigue Behavior of Materials for LWR Plants in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 511-516.
[14] Xiankang ZHONG,Junying HU. Corrosion Behavior of X65 Carbon Steel in CO2Containing Liquids with Constant pH and Ferrous Ion Concentration[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[15] Gaohong CHEN,Yuansen HU,Mei YU,Jianhua LIU,Guoai LI. Effect of Sulfuric Acid Anodizing on Mechanical Properties of 2E12 Al-alloy[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
No Suggested Reading articles found!