Please wait a minute...
J Chin Soc Corr Pro  2009, Vol. 29 Issue (3): 230-234    DOI:
技术报告 Current Issue | Archive | Adv Search |
EFFECTS OF THE REDUCTANT ON THE ZINC-BASED WATERBORNE ANTICORROSIVE COATING
LI Tao; ZHAO Maiqun; ZHAO Yang; GUO Jia
College of Materials Science and Engineering; Xi’an University of Technology; Xi’an 710048
Download:  PDF(1050KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effects of four kinds of reductants, acrylic acid, succinic acid, glycerol, glucose, and their contents  on the bonding strength and anticorrosion of zinc-based   waterborne anticorrosive coatings were studied through    adhesive tape test, ammonium nitrate solution accelerated corrosion method, electrochemical measurement, thermogravimetric and comparison with zinc plating. The experimental results indicate that variety and content of the reductants had markedly influenced on the bonding strength and corrosion resistance of coatings. Using acrylic acid as the reductant the coatings had high bonding strength in a large adding range, and it can hold high bonding strength when the other reductants had low content. The corrosion resistance time increases firstly, and then decreases with the increment of reductant content. The coatings with acrylic acid or glycerol as reductant had good comprehensive properties, optimal dosage were 60 g/L and 20 g/L respectively. The coatings are composed of multilayer flake zinc powder and cement substance, and the corrosion resistance performances are obviously superior to zinc plating under different environmental conditions. Moreover, the formation mechanism of coatings is analyzed, thermodynamical calculation shows that all the cure reactions using these reductants can proceed automatically at solidifying temperature.

Key words:  zinc-based waterborne coating      reductant      bonding strength      corrosion resistance      solidification mechanism     
Received:  19 November 2007     
ZTFLH: 

TG174.41

 

Cite this article: 

LI Tao ZHAO Maiqun ZHAO Yang GUO Jia. EFFECTS OF THE REDUCTANT ON THE ZINC-BASED WATERBORNE ANTICORROSIVE COATING. J Chin Soc Corr Pro, 2009, 29(3): 230-234.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2009/V29/I3/230

[1] Gheno F. Clean processes-alternatives to electroplating[J]. T. I.Met. Finish, 1996, 74(5): 7-10
[2] Gao Q. Dacromet-one kind of excellent new coating[J]. Electroplat. Pollut.Control, 1995, 15(5): 29-30
    (高勤. 达克罗--一种优秀新型涂层[J]. 电镀与环保, 1995, 15(5): 29-30)
[3] Alain Sontang. Zinc/aluminum coating for corrosion protection[J].Finishing, 1992, 83(6): 38-42
[4] Su H J, Zhao Q, Chen X P. Research on composition and structure of Zn-Cr coating[J]. Surf. Technol., 2002, 31(5): 12-15
    (苏红军, 赵旗, 陈小平. 水系锌铬膜涂层组成结构的研究[J]. 表面技术, 2002, 31(5): 12-15)
[5] Dong J Z. 12 testing technology of Zn-Cr coating[J]. Mater.Prot., 2005, 38(8): 67-68
    (东建中. 锌铬膜常用检测技术12项[J]. 材料保护, 2005, 38(8): 67-68)
[6] Liu B, Li Y, Wang F H. Study on the effect of zinc pigments size on the electrochemical behavior of organic zinc-rich coatings[J]. J. Chin.Soc. Corros. Prot., 2003, 23(6): 350-354
    (刘斌, 李瑛, 王福会. 锌粉颜料尺寸对有机富锌涂层电化学行为的影响[J]. 中国腐蚀与防护学报, 2003, 23(6): 350-354)
[7] Xie D M, Hu J M, Tong S P, et al. The development of zinc-rich paints[J]. J. Chin. Soc. Corros. Prot., 2004, 24(5): 314-320
    (谢德明, 胡吉明, 童少平等. 富锌漆研究进展[J]. 中国腐蚀与防护学报, 2004, 24(5): 314-320)
[8] Abreu C M, Izquierdo M, Keddam M, et al.Electrochemical behavior of zinc-rich epoxy paints in 3% NaClsolution[J]. Electrochim. Acta, 1996, 41(15): 2405-2415
[9] Department of Inorganic Chemistry, Dalian University of Technology. Inorganic Chemistry(5th edition)[M].Beijing: Higher Education Press, 2006: 565-570
    (大连理工大学无机化学教研室编. 无机化学(第五版)[M]. 北京: 高等教育出版社, 2006: 565-570)
[10] Han S M, Zheng Y Z, Yu S X, et al. Study on microstructure and the mechanism of zinc-aluminum conversion coating [J]. J. Chin. Soc. Corros. Prot., 2002, 22(5): 269-273
     (韩树民, 郑炀曾, 于升学等. 锌铝铬转化膜微观结构与成膜机理研究[J]. 中国腐蚀与防护学报, 2002, 22(5): 269-273)
[11] Wei J F, et al (Translated), John A Dean(ed.).Lange's Handbook of Chemistry(2nd edition)[M].Beijing: Science Press, 2003
     (魏俊发等译, (美) J$\cdot$A$\cdot$迪安主编. 兰氏化学手册(第二版)[M]. 北京: 科学出版社, 2003)

[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[9] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[10] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[11] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[12] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[13] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[14] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[15] Delin LAI,Gang KONG,Chunshan CHE. Effect of Sodium Silicate Sealing on Corrosion Resistance of TiO2Conversion Film on Hot-dip Galvanized[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
No Suggested Reading articles found!