Please wait a minute...
J Chin Soc Corr Pro  2009, Vol. 29 Issue (2): 93-98    DOI:
技术报告 Current Issue | Archive | Adv Search |
GROWTH CHARACTERISTICS OF THERMOPHILE SULFATE-REDUCING BACTERIA AND ITS EFFECT ON CARBON STEEL
LIU Hongfang; LIU Tao
Key Laboratory of Materials Chemistry Service Failure; Department of Chemistry;Huazhong University of Science and Technology; Wuhan 430074
Download:  PDF(1493KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The API-RP38 medium was used to culture the thermophile sulfate-reducing bacteria (SRB) isolated from Bohai oilfield,and the bacteria was preliminarily identified according to its growth characteristics. Additionally, electrochemical means were taken to study the effect of the bacteria on carbon steel. The results show that the growth cycle of the bacteria is shorter than that cultured under normal temperature. The optimum growth temperature of the bacteria is at 60℃ within the growth temperature range from 40℃ to 80℃. The growth pH ranges from 6.0 to 7.6, and the optimum is about 7.0. The mass loss measurement at 60 ℃ in the culture medium indicates that the corrosion on carbon steel in thermophile SRB solution is 2.6 times more serious than that in the blank medium. As an uneven biofilm occurs on the carbon steel surface,energy dispersive spectrometer (EDS) analysis indicates that the corrosion products have various FeSx structures in the uneven biofilm. The free corrosion potential increases in the first few days, and later decreases. The electrochemical impedance spectroscopy (EIS) shows that the structure changes in accordance with the growth of the bacteria. Therefore, high temperature microbial corrosion occurs on the matrix materials.

Key words:  sulfate-reducing bacteria      electrochemistry      biofilm     
Received:  13 July 2007     
ZTFLH: 

O646

 
Corresponding Authors:  LIU Hongfang     E-mail:  Liuhf2003@yahoo.com.cn

Cite this article: 

LIU Hongfang LIU Tao. GROWTH CHARACTERISTICS OF THERMOPHILE SULFATE-REDUCING BACTERIA AND ITS EFFECT ON CARBON STEEL. J Chin Soc Corr Pro, 2009, 29(2): 93-98.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2009/V29/I2/93

[1] Wang M Y,Liang X B,Zheng Y P,et al. Advanced identification of sulfate-reducing bacteria and its detection method [J]. J. Microbio., 2005, 25(6):81-84
    (王明义, 梁小兵, 郑亚萍等.硫酸盐还原菌鉴定和检测方法的研究进展[J]. 微生物学杂志, 2005, 25(6):81-84)
[2] Cao J W, Shen P, Li Z Y.Extremophiles [M]. Wuhan: Wuhan University Press, 2004
    (曹军卫, 沈萍, 李朝阳. 嗜极微生物[M]. 武汉: 武汉大学出版社,2004)
[3] Zhang D Q, Xu Q J, Lu Z. Study on intramolecular synergistic inhibitive effects of benzotriazoly moiety and imidazoly moiety [J]. J. Chin. Soc. Corros. Prot., 1999,19(5): 280-284
    (张大全, 徐群杰, 陆柱.苯并三唑和咪唑分子内缓蚀协同作用的研究[J]. 中国腐蚀与防护学报, 1999,19(5): 280-284)
[4] Dockins W S, Olson G J,McFeters G A, et al. Dissimilatory bacterial sulfate reduction in Montana ground waters [J]. Geomicrobiol. J., 1980, 2: 83-97
[5] Liu H F, Xu L M, Zheng J S. Steel corrosion under SRB biofilm: a review [J]. Oilfield Chem., 2000, 17(1):93-96
    (刘宏芳, 许立铭, 郑家燊. 硫酸盐还原菌生物膜下钢铁腐蚀研究概况[J]. 油田化学, 2000, 17(1):93-96)
[6] Buchanan R E, Gibbons N E. Bergey’s Manual of Determinative Bacteriology (8th ed.) [M]. Beijing: Science Press,1984
    (R. E. 布坎南, N. E. 吉本斯.伯杰细菌鉴定手册(第八版)[M]. 北京: 科学出版社, 1984)
[7] Ma F, Wei L, Shan D, et al. Identification and research of growth factor of one function bacteria of sulfate reducing bacteria-anaerofilum pentosovorans A9 [J]. J. Harbin Inst. Technol.,2007, 39(2): 238-241
    (马放, 魏利, 山丹等.硫酸盐还原菌Anaerofilum pentosovrans A9鉴定及其生长因子研究[J].哈尔滨工业大学学报, 2007, 39(2): 238-241)
[8] Zhou D Q. Microbiology [M]. Beijing: Higher Education Press,1993
    (周德庆. 微生物学教程[Q]. 北京: 高等教育出版社,1993)
[9] Xu C M,Zhang Y S,Cheng G X,et al.Investigation of sulfate-reducing bacteria on pitting of 316L stainless steel in cooling water system for oil refinery [J]. J.Chin. Soc. Corros. Prot., 2007, 27(1): 48~53
    (胥聪敏, 张耀亨, 程光旭等. 炼油厂冷却水系统硫酸盐还原菌对316L不锈钢点腐蚀的研究[J]. 中国腐蚀与防护学报, 2007, 27(1):48~53)
[10] Li X B,Wang J, Wang W. The electrochemical method of biofilm monitoring in seawater [J]. J.Chin. Soc. Corros. Prot., 2005, 25(2): 84-87
    (李相波,王佳, 王伟. 海洋环境微生物附着的电化学检测技术[J].中国腐蚀与防护学报, 2005, 25(5): 84-87)
[11] Cheng G, Wang J, Li X B, et al. Advance in research on microorganism attachment and ennoblement of open-circuit-potential of passive metals in seawater [J]. Corros. Sci. Prot. Technol., 2006, 18(6):422-425 
    (成光, 王佳, 李相波等.海水环境中微生物附着与钝性金属开路电位正移现象的研究进展[J].腐蚀科学与防护技术, 2006, 18(6): 422-425)
[12] Burde L. Microbiologically influenced corrosion [A].NACE International[C]. Houston, Texas, 1997: 4-7
[13] Young L Y, Mitchell R. The role of microorganisms in marine fouling [J]. Int. Bio. Bull., 1973, 9: 105-109

[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[5] FU Haibo, LIU Xiaoru, SUN Yuan, CAO Dali. Corrosion Resistance of Epoxy Resin/recrystallized Silicon Carbide Composite[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[6] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[7] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[8] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[9] QI Peng, WAN Yi, ZENG Yan, ZHENG Laibao, ZHANG Dun. Rapid Detection Methods for Sulfate-reducing Bacteria in Marine Environments[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[10] CHEN Jiachen,WANG Zhongwei,QIAO Lijie,YAN Yu. Interaction between Friction-wear and Corrosion in Special Environment[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[11] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[12] Tangqing WU,Zhaofen ZHOU,Xinming WANG,Dechuang ZHANG,Fucheng YIN,Cheng SUN. Thermodynamic and Dynamic Analyses of Microbiologically Assisted Cracking[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[13] Xin LI,Xu CHEN,Wuqi SONG,Jiaxing YANG,Ming WU. Effect of pH Value on Microbial Corrosion Behavior of X70 Steel in a Sea Mud Extract Simulated Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[14] Mingyu BAO, Chengqiang REN, Jingsi HU, Bo LIU, Jiameng LI, Feng WANG, Li LIU, Xiaoyang GUO. Stress Induced Corrosion Electrochemical Behavior of Steels for Oil and Gas Pipes[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
[15] Xiuzhou LIN, Li YANG, Yongjun MEI, Xingwen ZHENG, Shuwen LUO, Xuejun CUI. Corrosion Electrochemical Behavior Beneath Thin Electrolyte Layer of Potassium Formate Solution of Cd-plated 4130 Steel Used for Aircraft Landing Gear[J]. 中国腐蚀与防护学报, 2017, 37(6): 567-574.
No Suggested Reading articles found!