Please wait a minute...
J Chin Soc Corr Pro  2008, Vol. 28 Issue (6期): 321-324    DOI:
研究报告 Current Issue | Archive | Adv Search |
AFM STUDY OF MICROBIOLOGICALLY INFLUENCED CORROSION OF COPPER ALLOYS
DU Yili1; LI Jin1; GE Xiaopeng2; YUAN Weishuang1
1. Department of Municipal and Environmental Engineering; Beijing Jiaotong University; Beijing 100044
2. Research Center for Eco-Environmental Science; Chinese Academy of Sciences; Beijing 100085
Download:  PDF(1029KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Atomic force microscopy (AFM) was applied to investigate the microbiologically influenced corrosion of copper alloys immerged in the sulfate reducing bacteria (SRB) inoculated culture medium. Three types of copper alloys were studied, which are HSn70-1A, HSn70-1B and HSn70-1AB. Biofilms formed on the surface of these copper alloys were different. The measurements of surface roughness indicated an asymmetrical structure of the biofilm, and HSn70-1AB has maximal surface roughness. Furthermore, the roughness of HSn70-1A is higher than HSn70-1B. Following the removal of biofilms,increase of roughness indicated the deterioration of copper alloys results from microbiologically influenced corrosion (MIC). The capability of the AFM to produce quantitative information in the study of MIC was confirmed.

Key words:  AEM      microbiologically influenced corrosion      biofilm     
Received:  12 February 2007     
ZTFLH: 

TG172.9

 
Corresponding Authors:  DU Yili   

Cite this article: 

DU Yili LI Jin GE Xiaopeng YUAN Weishuang. AFM STUDY OF MICROBIOLOGICALLY INFLUENCED CORROSION OF COPPER ALLOYS. J Chin Soc Corr Pro, 2008, 28(6期): 321-324.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2008/V28/I6期/321

[1]Videla H A.Biological corrosion and biofilm effects on metal biode-terioration[J].Biodeter.Res.1989,2:39-50
[2]Devender K J.Microbial colonization of surface of stainless steel coupons in a deionized water system[J].Water.Res.,1995,29(8):1869-1876
[3]Beer D,Stoodley P,Roe F,et al.Effects of biofilm structures onoxygen distribution and mass transport[J].Biotechnol.Bioeng.,1994,43(11):1131-1138
[4]Lee W C,de Beer D.Oxygen and pH microprofiles above corrosion mild steel covered with a biofilm[J].Biofouling,1995,8(4):273-280
[5]Bremer P J,Geesey G G,Drake B.Atomic force microscopy ex-amination of the topography of a hydrated bacterial biofilm on a copper surface[J].Curr.Microbiol.,1992,24(4):223-230
[6]Beech I B,Cheung C W S,Johnson D B,et al.Comparative studies of bacterial biofilms on steel surfaces using atomic force microscopy and environmental scanning electron microscopy[J].Biofouling,1996,10(1-3):65-77
[7]Xu L C,Chan K Y,Fang H P.Application of atomic force mi-croscopy in the study of microbiologically influenced corrosion[J].Mater.Charact.,2002,48(2/3):195-203
[8]Li S M,Liu J H,Wu H.Study of microbiologically influenced corrosion of LY12aluminum alloy with atomic force microscopy[J].J.Beijing Univ.Aeronaut.Astronaut.,2003,29(5):419-423(李松梅,刘建华,吴昊.原子力显微镜下LY12铝合金的微生物腐蚀行为[J].北京航空航天大学学报,2003,29(5):419-423)
[9]Fang H P,Xu L C,Zhang T.Study of marine biocorrosion using AFM and Molecular techniques[J].Electrochemistry,2003,9(2):164-169(方汉平,徐立冲,张彤.利用原子力显微镜和分子技术研究海水微生物腐蚀[J].电化学,2003,9(2):164-169)
[10]Liu H F,Wang M F,Xu L M,et al.The role of Ca2+on the mi-crobiologically induced corrosion of carbon steel[J].J.Chin.Soc.Corros.Prot.,2004,24(1):45-47(刘宏芳,汪梅芳,许立铭等.钙离子对碳钢微生物腐蚀的影响[J].中国腐蚀与防护学报,2004,24(1):45-47)
[11]Lin J,Yan Y G,Chen G Z,et al.Application of atomic force microscopy in study of sulfate reducing bacteria to A3steel[J].J.Chin.Soc.Corros.Prot.,2007,27(2):70-73(林晶,阎永贵,陈光章等.应用原子力显微镜研究硫酸盐还原菌对A3钢的腐蚀[J].中国腐蚀与防护学报,2007,27(2):70-73
[12]Postgate J R.The Sulfate-reducing Bacteria(2nd ed.)[M].Cam-bridge:Cambridge University Press,1984,32
[13]GB/T16545-1996,Corrosion of metals and alloys-Removal of cor-rosion products from corrosion test specimens[S].(GB/T16545-1996,金属和合金的腐蚀腐蚀试样上腐蚀产物的清除[S].)
[14]Caldwell D E,Korber D R,Lawrence J R.Imaging of bacterial cells by fluorescence exclusion using scanning confocal laser mi-croscopy[J].J.Microbiol.Methods,1992,15:249-261
[15]Beech I B,Gaylarde C C,Smith J J,et al.Extracellular polysac-charides from Desulfovibrio desulfuricans and Pseudomonas fluo-rescens in the presence of mild and stainless steel[J].Appl.Mi-crobiol.Biottechnol.,1991,25:65-71
[16]Steele A,Goddard D T,Beech I B.Atomic force microscopy study of the biodeterioration of stainless steel in the presence of bacterial biofilms[J].Int.Biodet.Biodegrad.,1994,34(1):35-46
[17]Westra K L,Thomson D J.Effect of tip shape on surface rough-ness measurements from atomic force microscopy images of thin films[J].J.Vac.Sci.Technol.,1995,13:344-349
[1] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[2] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[3] XU Congmin,LUO Lihui,WANG Wenyuan,ZHAO Miaomiao,TIAN Yongqiang,SONG Pengdi. Enhancing Sterilization Effect of Bactericide by D-tyrosine to Iron Bacterial Biofilm on Carbon Steel Surface[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[4] CHEN Jiachen,WANG Zhongwei,QIAO Lijie,YAN Yu. Interaction between Friction-wear and Corrosion in Special Environment[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[5] Xianbo SHI,Chunguang YANG,Wei YAN,Dake XU,Maocheng YAN,Yiyin SHAN,Ke YANG. Microbiologically Influenced Corrosion of Pipeline Steels[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[6] Juna CHEN,Jiajia WU,Peng WANG,Dun ZHANG. Effect of Desulfovibrio sp. and Vibrio Alginolyticus on Corrosion Behavior of 907 Steel in Seawater[J]. 中国腐蚀与防护学报, 2017, 37(5): 402-410.
[7] Hongwei LIU,Hongfang LIU. Research Progress of Corrosion of Steels Induced by Iron Oxidizing Bacteria[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
[8] Yalin LV,Bijuan ZHENG,Hongwei LIU,Fuping XIONG,Hongfang LIU,Yulong HU. Effect of Static Magnetic Field on Adhesion of Sulfate Reducing Bacteria Biofilms on 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2016, 36(6): 652-658.
[9] WANG Yongxia, XIANG Hongliang, YANG Caiping, LIU Dong. Corrosion Resistance of Copper-bearing Duplex Stainless Steel in Culture Medium without and with Bacteria[J]. 中国腐蚀与防护学报, 2014, 34(6): 558-565.
[10] NIE Yuanyuan, DUAN Jizhou, DU Min, HOU Baorong. Influence of NaN3 on Cathodic Oxygen Reduction Induced by Microbe-assisted Catalysis on Surface of 316LSS in Seawater[J]. 中国腐蚀与防护学报, 2014, 34(4): 359-365.
[11] LIU Tong, ZHANG Yanfei, CHEN Xu, WANG Dan, CHEN Yu, WANG Guangfu. Effect of SRB on Corrosion Behavior of X70 Steel in a Simulated Soil Solution[J]. 中国腐蚀与防护学报, 2014, 34(2): 112-118.
[12] DU Xiangqian,DUAN Jizhou,ZHAI Xiaofan,LUAN Xin,ZHANG Jie,HOU Baorong. Corrosion Behavior of 316L Stainless Steel Influenced by Iron-reducing Bacteria Shewanella Algae Biofilms[J]. 中国腐蚀与防护学报, 2013, 33(5): 363-370.
[13] LIU Bin, DUAN Jizhou, HOU Baorong. MICROBIOLOGICALLY INFLUENCED CORROSION OF 316L SS BY MARINE BIOFILMS IN SEAWATER[J]. 中国腐蚀与防护学报, 2012, 32(1): 48-53.
[14] DUAN Dongxia, CHEN Xiguang, LIN Cunguo. 907A STEEL CORROSION IN ARTIFICIAL SULFATE REDUING BACTERIA BIOFILM[J]. 中国腐蚀与防护学报, 2011, 31(6): 453-456.
[15] CHEN Juan1, LEI Yanhua1, GAO Guanhui1, KONG Moli1, YIN Yansheng2. CORROSION BEHAVIOR OF Cu-Ni-Sn ALLOY UNDER SULFATE-REDUCING BACTERIABIOFILM[J]. 中国腐蚀与防护学报, 2011, 31(3): 231-235.
No Suggested Reading articles found!