Please wait a minute...
J Chin Soc Corr Pro  2008, Vol. 28 Issue (5): 299-302     DOI:
Research Articles Current Issue | Archive | Adv Search |
Study of influence by sulfate-reducing bacteria on formation of corrosion products on the surface of Q235 steel
;;;
Download:  PDF(912KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The formation of corrosion products on the surface of Q235 steel in seawater containing sulfate-reducing bacteria(SRB) was studied by scanning electronic microscopy(SEM), electronic probe microanalyzer(EPMA) and transmission electron microscopy(TEM) combined with energy dispersive X-ray detector(EDX) in this paper. SEM observation showed that the corrosion commenced with the attachment of bacteria to the steel surface, producing organic acids, hydrogen sulphide and extracellular polymer substances(EPS). Globules of hydrated ferric oxide were the primary form of corrosion products. With exposure to further deterioration caused by SRB, their transformation to spongy globules of iron sulphide was observed by EPMA. The presence of single crystal FeS in the corrosion products was identified by electronic diffraction pattern of TEM and composition analysis by EDX.
Key words:  Microbiologically influenced corrosion (MIC)      SRB      Corrosion product      EPMA      
Received:  17 January 2007     
ZTFLH:  TG172.5  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

;. Study of influence by sulfate-reducing bacteria on formation of corrosion products on the surface of Q235 steel. J Chin Soc Corr Pro, 2008, 28(5): 299-302 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2008/V28/I5/299

[1]Goldhaber M B,Kaplan I R.The sulfur cycle[A].The Sea-Ideasand Observations on Progress in the Study of the Seas[C].WileyIntersci.,1974,569-655
[2]Videla H A.Manual of Biocorrosion[M].Boca Raton:Lewis Pub-lishers,1996
[3]Liu H F,Xu L M,Zheng J S.Influence of SRB on corrosion of car-bon steel[J].J.Chin.Soc.Corros.Prot.,2000,20(1):41-46(刘宏芳,许立铭,郑家.SRB生物膜与碳钢腐蚀的关系[J].中国腐蚀与防护学报,2000,20(1):41-46)木焱
[4]Zhu R X,Ma Y L,Na J Y,et al.SRB corrosion of petroleum tubu-lar materials[J].J.Chin.Soc.Corros.Prot.,2001,21(4):225-229(朱绒霞,马艳玲,那静彦等.油田管材的SRB腐蚀[J].中国腐蚀与防护学报,2001,21(4):225-229)
[5]Sun C,Han E H.Effects of SRB on corrosion of 1Cr18Ni9Ti stain-less steel in soils of Cl-[J].J.Chin.Soc.Corros.Prot.,2003,23(4):46-51(孙成,韩恩厚.土壤中SRB及Cl-对1Cr18Ni9Ti不锈钢腐蚀的相互影响[J].中国腐蚀与防护学报,2003,23(4):46-51)
[6]Liu J,Xu L M,Zheng J S.A study on corrosion behavior underthe biofilm of sulfate-reducing bacteria on Cu-Zn alloy[J].J.Chin.Soc.Corros.Prot.,2001,21(6):345-351(刘靖,许立铭,郑家.硫酸盐还原菌生物膜下Cu-Zn合金的腐蚀研究[J].中国腐蚀与防护学报,2001,21(6):345-351)
[7]Zhang X L,Chen Z X,Liu H H,et al.Effect of environment fac-tors on the growth of sulfate-reducing bacteria[J].J.Chin.Soc.Corros.Prot.,2000,20(4):224-229(张小里,陈志昕,刘海洪等.环境因素对硫酸盐还原菌生长的影响[J].中国腐蚀与防护学报,2000,20(4):224-229)
[8]Liu H F,Liu L W,Xu L M.Effects of biofilm on corrosion of car-bon steel[J].J.Chin.Soc.Corros.Prot.,1999,19(5):291-295(刘宏芳,刘烈炜,许立铭等.生物膜对碳钢腐蚀的影响[J].中国腐蚀与防护学报,1999,19(5):291-295)
[9]Xu C M,Zhang Y H,Cheng G X,et al.Investigation of sulfate-reducing bacteria on pitting of 316L stainless steel in cooling wa-ter system for oil refinery[J].J.Chin.Soc.Corros.Prot.,2007,27(1):48-53(胥聪敏,张耀亨,程光旭等.炼油厂冷却水系统硫酸盐还原菌对316L不锈钢点腐蚀的研究[J].中国腐蚀与防护学报,2007,27(1):48-53)
[10]Costerton J W,Lewandowski Z,Caldwell D E,et al.Bacterialbiofilms[J].Ann.Rev.Microbiol.,1995,49:711-745
[11]Neal A L,Techkarnjanaruk S,Dohnalkova A.Iron sulfides andsulfur species produced at hematite surfaces in the presence ofsulfate-reducing bacteria[J].Geochim.Cosmochim.Acta,2001,65:223
[12]Jeffrey R,Melchers R E.Bacteriological influence in the devel-opment of iron sulphide species in marine immersion environments[J].Corros.Sci.,2003,45(4):693-714
[13]Lee W,Characklis W G.Corrosion of mild steel under anaerobic biofilm[J].Corrosion,1993,49(3):186-198
[14]Rickard D T.The microbiological formation of iron sulphides[J].Stockholm Contrib.Geol.,1969,20:49-66
[15]Herbert R B,Benner S G,Pratt A R,et al.Surface chemistryand morphology of poorly crystalline iron sulfides precipitated inmedia containing sulfate-reducing bacteria[J].Chem.Geol.,1998,144:87-97
[16]Benning L G,Wilkin R T,Konhauser K O.Iron monosulphidestability:Experiments with sulphate reducing bacteria[A].Geo-chemistry of the Earth's Surface[C].Balkema,1999,429-432
[1] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[4] JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[5] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[6] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[7] Fang GUAN, Xiaofan ZHAI, Jizhou DUAN, Baorong HOU. Progress on Influence of Cathodic Polarization on Sulfate-reducing Bacteria Induced Corrosion[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[8] Mingyu BAO, Chengqiang REN, Jingsi HU, Bo LIU, Jiameng LI, Feng WANG, Li LIU, Xiaoyang GUO. Stress Induced Corrosion Electrochemical Behavior of Steels for Oil and Gas Pipes[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
[9] Xin ZHANG,Nianwei DAI,Yan YANG,Junxi ZHANG. Effect of Direct Current Electric Field on Corrosion Mechanism of Zn Exposed to Simulated Industrial Environment[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[10] Shuangqing SUN,Qifei ZHENG,Chunling LI,Xiumin WANG,Songqing HU. Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[11] Fu DONG,Yulong HU,Xin ZHAO,Zhiqiao WANG. Effect of Hydrostatic Pressure on Corrosion Behavior of 10CrNi3MoV Steel[J]. 中国腐蚀与防护学报, 2017, 37(2): 183-188.
[12] Qian HU,Jing LIU,Yukun WANG,Feng HUANG,Mingjie DAI,Yanglai HOU. Corrosion Performance of Different Zones for Weld Joint of A710 Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2016, 36(6): 611-616.
[13] Qiang BAI,Yan ZOU,Xiangfeng KONG,Yang GAO,Yan LIU,Sheng DONG. Electrochemical Corrosion Behavior in Seawater of Weld Joints of CCSE40 Steel Prepared by Underwater WetWelding with Austenitic Welding Rod[J]. 中国腐蚀与防护学报, 2016, 36(5): 427-432.
[14] Dongfang JIANG,Yang BAI,Zhongliang ZHU,Naiqiang ZHANG,Zhuonan XIAO,Hong XU. Moving Process of Corrosion Products in Steam-water System of Supercritical Power Units[J]. 中国腐蚀与防护学报, 2016, 36(4): 343-348.
[15] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
No Suggested Reading articles found!