Please wait a minute...
J Chin Soc Corr Pro  2004, Vol. 24 Issue (6): 321-333     DOI:
Research Report Current Issue | Archive | Adv Search |
Mechanisms for corrosion fatigue crack propagation
卡尔加利大学机械与制造工程系
Download:  PDF(487KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The corrosion fatigue crack growth (FCG)behaviour,the effect of applied potential on corrosion FCG rates,and the fracture surfaces were studied for high-strength low-alloy , titanium alloys and magnesium alloys. During investigation of the effect of applied potential on corrosion FCG rates,polarization was switched on for a time period in which it was possible to register the change in the crack growth rate corresponding to the open-circuit potential and to measure the crack growth rate under polarization.Due to the higher resolution of the crack extension measurement technique,the time rarely exceeded 300s.This approach made possible the observation of a non-single mode effect of cathodic polarization on corrosion FCG rates.Cathodic polarization accelerated crack growth when the maximum stress intensity(Kmax) exceeded a certain well-defined critical value characterisitic for a given material-solution combination.When Kmax was lower than the critical value,the same cathodic polarization,with all other conditions(speci-men,solution,pH,loading frequency,stress ratio,temperature,etc.)being equal,retarded or had no influence on crack growth.The results and fractographic observations suggested that the acceleration in crack growth under cathodic polarization was due to hydrogen-induced cracking(HIC).Therefore,critical values of Kmax ,as well as the stress intensity range (ΔK)were regarded as corresponding to the onset of corrosion FCG according to the HIC mechanism and designated as KHIC and ΔKHIC.HIC was the main mechanism of corrosion FCG at Kmax>KHIC(ΔK>ΔKHIC).For most of the material-solution combinations investigated,stress-assisted dissolution played a dominant role in the corrosion fatigue crack propagation at Kmax
Key words:  corrosion fatigue      crack growth      fracture surface      high-strength steels      hydrogen-induced cracking      magne     
Received:  08 September 2004     
ZTFLH:  TG174.34  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

. Mechanisms for corrosion fatigue crack propagation. J Chin Soc Corr Pro, 2004, 24(6): 321-333 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2004/V24/I6/321

[1]GangloffRP .Corrosionfatiguecrackpropagationinmetals[A].In:Environment-InducedCrackingofMetals[M].GangloffRP ,IvesMB ,eds.NACE ,Houston,1990,55-106
[2]Sch櫣tzW.Fatiguelifeprediction-areviewofthestateoftheart[A].In:StructuralFailure,ProductLiabilityandTechnicalInsur ance[M].RossmanithHP ,eds.ElsevierScience,Amsterdam,1993,49-60
[3]ShipilovSA .Environment-assistedcrackingofmaterialsasasig nificantcauseofengineeringsystemsmalfunctions[J].Tech.LawInsur.,1996,1:131-142
[4]NewmanRC ,ProcterRPM .Stresscorrosioncracking:1965-1990[J].Br.Corros.J .,1990,25:259-269
[5]BarsomJM .MechanismsofcorrosionfatiguebelowKISCC[J].Int.J .Fract.Mech.,1971,7:163-182
[6]GallagherJP .CorrosionfatiguecrackgrowthratebehavioraboveandbelowKISCC[J].J.Mater.,1971,6:941-964
[7]VosikovskyO .Frequency,stressratioandpotentialeffectsonfa tiguecrackgrowthofHY130steelinsaltwater[J].J.Test.Eval.,1978,6:175-182
[8]CongletonJ ,CraigIH ,DentonBK ,ParkinsRN .CrackgrowthinHY80andHY130steelsbycorrosionfatigue[J].Met.Sci.,1979,13:436-443
[9]RomanivOM ,VoldemarovAV ,NykyforchynGM .Factorsinac celerationofcrackgrowthduringcorrosionfatigueofhigh-strengthsteels[J].Fiz.-Khim.Mekh.Mater.,1980,16(5):21-27(inRussian)
[10]FujiiCT ,SmithJA .Environmentalinfluencesontheaqueousfa tiguecrackgrowthratesofHY -130steel[A].In:CorrosionFa tigue:Mechanics,Metallurgy,ElectrochemistryandEngineering,ASTMSTP 801[M ].CrookerTW ,LeisBN ,edit.ASTM ,Philadelphia,1983,390-402
[11]KomaiK ,KitaS ,EndoK .Corrosionfatiguecrackgrowthofahigh-tensionsteelinNaClsolution[J].Bull.JapanSoc.Mech.Eng.,1984,27(227):847-853
[12]TongZS ,LiMQ ,FengBX ,ShiY .ThecorrosionfatigueofSiCrMoCuVsteelin3.5%NaClsolution[J].Corrosion,1985,41:121-126
[13]MurakamiR ,FergusonWG .Theeffectsofcathodicpotentialandcalcareousdepositsoncorrosionfatiguecrackgrowthrateinseawa terfortwooffshorestructuralsteels[J].FatigueFract.EngngMater.Struct.,1987,9:477-488
[14]MeynDA .Ananalysisoffrequencyandamplitudeeffectsoncor rosionfatiguecrackpropagationinTi-8Al-1Mo-1V[J].Met all.Trans.,1971,2:853-865
[15]PetersM ,GyslerA ,TjeringGL .InfluenceoftextureonfatiguepropertiesofTi-6Al-4V[J].Metall.Trans.,1984,15A :1597-1605
[16]RungtaR ,BegleyJA .TheeffectofappliedpotentialoncorrosionfatiguecrackgrowthratesofaNi-Cr-Mo-Vturbinediscsteelinaroomtemperature12MNaOHsolution[J].Corrosion,1979,35:544-550
[17]JonesDA .Aunifiedmechanismofstresscorrosionandcorrosionfatiguecracking[J].Metall.Trans.,1985,16A :1133-1141
[18]MasudaH ,NishijimaS .Applicationofscratchingelectrodemethodforcorrosionfatigue[J].Trans.Nat.Res.Inst.Met.,1987,29:44-50
[19]SpeidelMO ,BlackburnMJ,BeckTR ,FeeneyJA .Corrosionfa tigueandstresscorrosioncrackgrowthinhighstrengthaluminumalloys,magnesiumalloys,andtitaniumalloysexposedtoaqueousso lutions[A].In:CorrosionFatigue:Chemistry,MechanicsandMi crostructure[M ].DevereuxO ,McEvilyAJ,StaehleRW ,eds.NACE ,Houston,1972,324-345
[20]ShimojoM ,HigoY ,NunomuraS .Relationbetweentheamountoffreshbaresurfaceatthecracktipandthefatiguecrackpropagationrate[J].ISIJInt.,1991,31:870-874
[21]FroatsA ,AuneTKr,HawkeD ,UnsworthW ,HillisJ.Corrosionofmagnesiumandmagnesiumalloys[A].In:MetalsHandbook,Vol.13:Corrosion,9thed.[M].ASMInternational,MetalsPark,1987,740-754
[22]LoganHL .Mechanismofstress-corrosioncrackingintheAZ31Bmagnesiumalloy[J].J.Res.Nat.Bur.Stand.,1958,61:503-508
[23]TomashovND ,IsaevNI.Investigationofanodicprocessesduringstresscorrosioncrackinginmetals[J].Dok.Akad.NaykSSSR ,1960,132:409-412(inRussian)
[24]FairmanL ,WestJM .Stress-corrosioncrackingofamagnesium-aluminumalloy[J].Corros.Sci.,1965,5:711-715
[25]PughEN ,GreenJAS ,SlatteryPW .Onthepropagationofstress-corrosioncracksinamagnesium-aluminumalloy[A].In:Fracture1969[M].PrattPL ,etal,eds.London:ChapmanandHallLtd.,1969,387-395
[26]ChakrapaniDG ,PughEN .HydrogenembrittlementinaMg-Alalloy[J].Metall.Trans.,1976,7A :173-178
[27]MoccaryA ,ShastryCR .AninvestigationofstresscorrosioncrackinginMgAZ61alloyin3.5%NaCl+2%K2CrO4 aqueoussolutionatroomtemperature[J].Z .Werkstofftech.,1979,10:119-123
[28]MeletisEI ,HochmanRF .Crystallographyofstresscorrosioncrackinginpuremagnesium[J].Corrosion,1984,40:39-45
[29]StampellaRS ,.ProcterRPM ,AshworthV .Environmentally-inducedcrackingofmagnesium[J].Corros.Sci.,1984,24:325-341
[30]EbtehajK ,HardieD ,ParkinsRN .Theinfluenceofchloride-chromatesolutioncompositiononthestresscorrosioncrackingofaMg-Alalloy[J].Corros.Sci.,1988,28:811-829
[31]LynchSP ,TrevenaP .Stresscorrosioncrackingandliquidmetalembrittlement[J].Corrosion,1988,44:113-123
[32]UhligHH .Actionofcorrosionandstresson13%Crstainlesssteel[J].Met.Prog.,1950,57:486-487
[33]PhelpsEH ,LoginowAW .Stresscorrosionofsteelsforaircraftandmissiles[J].Corrosion,1960,16:325t-335t
[34]LeckieHP .Effectofenvironmentonstressinducedfailureofhighstrengthmaragingsteels[A].In:FundamentalAspectsofStressCorrosionCracking[M ].StaehleRW ,FortyAJ,VanRooyenD ,edit.NACE ,Houston,1969,411-419
[35]MurakamiR ,FergusonWG .Theeffectsofamarineenvironmentonthecorrosionfatiguecrackpropagationrateofpuretitaniumanditsweldmetal[J].FatigueFractEngngMater.Struct.,1993,16:255-265
[36]MarichevVA ,ShipilovSA .Influenceofelectrochemicalpolariza tiononcrackgrowthincorrosioncrackingandcorrosionfatigueofmagnesiumalloys[J].Fiz.-Khim.Mekh.Mater.,1986,22(3):21-25(inRussian)
[37]ShipilovSA .Anewmethodforidentificationofthemechanismofcorrosionfatiguecrackgrowth[J].Corrosion/96.NACE ,Houston,1996,247
[38]ShipilovSA .Corrosionfatiguecrackgrowthbehavioroftitaniumalloysinaqueoussolutions[J].Corrosion,1998,54:29-39
[39]MarichevVA ,RosenfeldIL .Investigationofthemechanismofstresscorrosioncrackinginhighstrengthsteels[J].Corrosion,1976,32:423-429
[40]MarichevVA ,RosenfeldIL ,LuninVV .Investigationoftheki neticsandmechanismofsubcriticalcrackgrowthbydelayedfailureoftitaniumalloysinandoutofcorrosiveenvironments[J].Corro sion,1980,36:373-379
[41]DawsonDB ,PellouxRM .Corrosionfatiguecrackgrowthoftita niumalloysinaqueoussolutions[J].Metall.Trans.,1974,5:723-731
[42]MarichevVA .Aquantifiedconceptofthehydrogenpenetrabilityofpassivatingfilmsatacracktipduringstresscorrosioncrackingofstructuralmaterials[J].Werkst.Korros.,1985,36:278-290
[43]PourbaixM .TranslatedbyFranklinJA .AtlasofElectrochemicalEquilibriainAqueousSolutions[M ].Oxford:PergamonPress,1966
[44]HardieD .Theenvironment-inducedcrackingofhexagonalmate rials:magnesium,titanium,andzirconium[A].In:Environment-InducedCrackingofMetals[M ].GangloffRP ,IvesMB ,eds.NACE ,Houston,1990,347-360
[45]GrinbergNM ,SerdyukVA ,MalinkinaTI,KamyshkovAS .Ef fectofvacuumandlowtemperatureonthefatiguecrackpropagationinmagnesiumalloys[J].Fiz.-Khim.Mekh.Mater.,1982,19(4):48-54(inRussian)
[46]OweBergTG .Kineticsofabsorptionbymetalsofhydrogenfromwaterandaqueoussolutions[J].Corrosion,1960,16:198t-200t
[47]BrownBF ,FujiiCT ,DahlbergEP .Methodsforstudyingtheso lutionchemistrywithinstresscorrosioncracks[J].J .Electrochem.Soc.,1969,116:218-219
[48]TauntRJ,CharnockW .Fluidcompositionswithinfatiguecracks[J].Mater.Sci.Eng.,1978,35:219-228
[49]TurnbullA ,FerrissDH .Mathematicalmodellingoftheelectro chemistryincorrosionfatiguecracksinstructuralsteelcathodicallyprotectedinseawater[J].Corros.Sci.,1986,26:601-628
[50]TurnbullA ,SaenzdeSantaMariaM .Predictingthekineticsofhydrogengenerationatthetipsofcorrosionfatiguecracks[J].Met all.Trans.,1988,19A :1795-1806
[51]ZakroczymskiT .Entryofhydrogenintoironalloysfromtheliquidphase[A].In:HydrogenDegradationofFerrousAlloys[M].Ori aniRA ,HirthJP ,SmialowskiM ,edit.NoyesPublications,ParkRidge,1985,215-250
[52]PellouxRM .Corrosion-fatiguecrackpropagation[A].In:Frac ture1969[M].PrattPL ,etal,edit.London:ChapmanandHallLtd.,1969,731-739
[53]OrianRA .Amechanistictheoryofhydrogenembrittlementofsteels[J].Ber.Bunsenges.Phys.Chem.,1972,76:848-857
[54]SureshS ,RitchieRO .Mechanisticdissimilaritiesbetweenenviron mentallyinfluencedfatigue-crackpropagationatnear-thresholdandhighergrowthratesinlowerstrengthsteels[J].Met.Sci.1982,16:529-538
[55]HiranoK ,KobayashiY ,KobayashiH ,NakazawaH .Hydrogenen hancedfatiguecrackgrowthbehaviorofhighstrengthsteels[A].In:Materials,ExperimentationandDesigninFatigue-Proc.Fa tigue’81[C].SherrattF ,SturgeonJB ,eds.WestburyHouse,Guild ford,1981,87-96
[56]TauL ,ChanSLI,ShinCS .Hydrogenenhancedfatiguecrackpropagationofbainiticandtemperedmartensiticsteels[J].Corros.Sci.,1996,38:2049-2060
[57]NakasaK ,SatohH .Theeffectofhydrogen-chargingonthefa tiguecrackpropagationbehaviorofβ-titaniumalloys[J].Corros.Sci.,1996,38:457-468
[58]YoungJrGA ,ScullyJI.Hydrogenembrittlementofsolutionheat-treatedandagedβ-titaniumalloysTi-15%V -3%Cr-3%Al-3%SnandTi-15%Mo-3%Nb-3%Al[J].Corrosion,1994,50:919-933
[59]VenkataramanG ,GoolsbyAD .Hydrogenembrittlementintitani umalloysfromcathodicpolarizationinoffshoreenvironments,anditsmitigation[J].Corrosion/96.NACE ,Houston,1996,554.
[60]GangloffRP ,TurnbullA .Crackelectrochemistrymodelingandfracturemechanicsmeasurementofthehydrogenembrittlementthresholdinsteel[A ].In:ModelingEnvironmentalEffectsonCrackGrowthProcesses[M ].JonesRH ,GerberichWW ,eds.Warrendale:TheMetallurgicalSocietyofAIME ,1986,55-81
[61]DeKazinczyF .Effectofstressesonhydrogendiffusioninsteel[J].Jernkont.Ann.,1995,139:885-895
[62]BeckW ,BockrisJO’M ,McBreenJ,NanisL .Hydrogenperme ationinmetalsasafunctionofstress,temperatureanddissolvedhy drogenconcentration[J].Proc.Roy.Soc.,1996,A290(1421):220-235(London)
[63]BlundyRF ,RoyceR ,PooleR ,ShreirLL .Effectofpressureandstressonpermeationofhydrogenthroughsteel[A].In:StressCor rosionCrackingandHydrogenEmbrittlementofIronBaseAlloys[C].StaehleRW ,HochmannJ ,McCrightRD ,SlaterJE ,eds.NACE ,Houston,1977,636-647
[64]TroianoAR .Theroleofhydrogenandotherinterstitialsinthemechanicalbehaviorofmetals[J].Trans.ASM ,1960,52:54-80
[65]DoigP ,JonesGT .Amodelfortheinitiationofhydrogenembrit tlementcrackingatnotchesingaseoushydrogenenvironments[J].Metall.Trans.,1977,8A :1993-1998
[66]AkhurstK .Acriterionforhydrogen-inducedfracture[A].In:AdvancesinFractureResearch-Fracture81[M ].FrancoisD ,etal,eds.Oxford:PergamonPress,1982,1899-1907
[67]RitchieRO ,GenietsLCE ,KnottJF .Effectsofgrain-boundaryembrittlementonfractureandfatiguecrackpropagationinalowal loysteel[A].In:TheMicrostructureandDesignofAlloys[M ].London:TheInstituteofMetals,1973,124-128
[68]PaoPS ,WeiW ,WeiRP .EffectoffrequencyonfatiguecrackgrowthresponseofAISI 4340steelinwatervapor[A].In:Envi ronment-SensitiveFractureofEngineeringMaterials[M ].ForoulisZA ,eds.Warrendale:TheMetallurgicalSocietyofAIME ,1979,565-580
[69]NakasaK ,TakeiH ,KajiwaraK .Effectofstresswaveshapeonthecrackpropagationvelocityincyclicdelayedfailure[J].EngngFract.Mech.,1981,14:507-517
[70]HiroseY ,MuraT .Cracknucleationandpropagationofcorrosionfatigueinhigh-strengthsteel[J].EngngFract.Mech.,1985,22:859-870
[71]PittinatoGF .Hydrogen-enhancedfatiguecrackgrowthinTi-6Al-4VELIweldments[J].Metall.Trans.,1972,3:235-243
[72]GerberichWW ,MoodyNR ,JensenCL ,HaymanC ,Jatavallab hulaK .Hydrogeninα/βandallβtitaniumsystems:analysisofmi crostructureandtemperatureinteractionsoncracking[A].In:Hy drogenEffectsinMetals[M].BernsteinIM ,ThompsonAW ,eds.Warrendale:TheMetallurgicalSocietyofAIME ,1981,731-743
[73]OrianiRA ,JosephicPH .Equilibriumaspectsofhydrogen-in ducedcrackingofsteels[J].ActaMetall.,1974,22:1065-1074
[74]GerberichWW ,ChenYT .Hydrogen-controlledcracking-anapproachtothresholdstressintensity[J].Metall.Trans.,1975,6A :271-278
[75]EndoK ,KomaiK ,MatsudaY .Influencesofstressratiosoncyclicstresscorrosioncrackgrowthcharacteristicsofahigh-strengthsteel[J].Bull.JapanSoc.Mech.Eng.,1981,24(197):1885-1892
[76]GerberichWW ,YuW .Hydrogeninteractionsinfatiguecrackthresholds[A].In:FractureProblemsandSolutionsintheEnergyIndustry[C].SimpsonLA ,eds.Oxford:PergamonPress,1982,39-50
[77]VanLeeuwenHP .Thekineticsofhydrogenembrittlement:aquantita tivediffusionmodel[J].EngngFract.Mech.,1974,6:141-146
[78]McMahonJrCJ,BriantCL ,BanerjiSK .Theeffectsofhydrogenandimpuritiesonbrittlefractureinsteel[A].In:AdvancesinRe searchontheFractureofMaterials-Fracture77[M].TaplinDMR ,eds.NewYork:PergamonPress,1978,363-385
[79]BowlesCQ ,SchijveJ .Experimentalobservationsofenvironmentalcontributionstofatiguecrackgrowth[A].In:CorrosionFatigue:Mechanics,Metallurgy,ElectrochemistryandEngineering,ASTMSTP 801[M].CrookerTW ,LeisBN ,eds.ASTM ,Philadelphia,1983,96-113
[80]PhillipsII,PooleP ,ShreirLL .HydrideformationduringcathodicpolarizationofTi-I.Effectofcurrentdensityonkineticsofgrowthandcompositionofhydride[J].Corros.Sci.,1972,12:855-866
[81]OrmanS ,PictonG .Theroleofhydrogeninthestresscorrosioncrackingoftitaniumalloys[J].Corros.Sci.1974,14:451-459
[82]HackJE ,LeverantGR .Theinfluenceofmicrostructureonthesusceptibilityoftitaniumalloystointernalhydrogenembrittlement[J].Metall.Trans.,1982,13A :1729-1738
[83]MeynDA .Effectofhydrogenonfractureandinert-environmentsustainedloadcrackingresistanceofα-βtitaniumalloys[J].Met all.Trans.,1974,5:2405-2414
[84]SastrySML ,LederichRJ ,RathBB .Subcriticalcrack-growthundersustainedloadinTi-6Al-6V -2Sn[J].Metall.Trans.,1981,12A :83-94
[85]PaoPS ,WeiRP .Hydrogen-enhancedfatiguecrackgrowthinTi-6Al-2Sn-4Zr-2Mo-0.1Si[A].In:Titanium,ScienceandTechnology[M ].TjeringGL ,ZwickerU ,BunkW ,eds.DGM ,Oberursel,1985,4:2503-2510
[86]ClarkeCE ,HardieD ,IkedaBM .Theeffectofhydrogencontentonthefractureofpre-crackedtitaniumspecimens[J].Corros.Sci.,1994,36:487-509
[87]FrandsenJD ,MarcusHL .Thecorrelationbetweengrainsizeandplasticzonesizeforenvironmentalhydrogenassistedfatiguecrackpropagation[J].Scrip.Metall.,1975,9:1089-1094
[88]AustenIM ,McIntyreP .Corrosionfatigueofhigh-strengthsteelinlow-pressurehydrogengas[J].Met.Sci.,1979,13:420-428
[89]RungtaR ,BegleyJA ,StaehleRW .Effectofsteamimpuritiesoncorrosionfatiguecrackgrowthratesofaturbinediscsteel[J].Cor rosion37.1981,682-690
[90]RobertsonWD ,TetelmanAS .Aunifiedstructuralmechanismforintergranularandtransgranularcorrosioncracking[A ].In:StrengtheningMechanismsinSolids[M ].ASM ,MetalsPark,1962,217-252
[91]YoshinoK ,McMahonJrCJ .Thecooperativerelationbetweentemperembrittlementandhydrogenembrittlementinahighstrengthsteel[J].Metall.Trans.,1974,5:363-370
[92]BriantCL ,BanerjiSK .Intergranularfailureinsteel:theroleofgrain-boundarycomposition[J].Int.Met.Rev.,1978,23:164-199
[93]CraigBD ,KraussG .Thestructureoftemperedmartensiteanditssusceptibilitytohydrogenstresscracking[J].Metall.Trans.,1980,11A :1799-1808
[94]BandyopadhyayN ,KamedaJ ,McMahonJrCJ .Hydrogen-in ducedcrackingin4340-typesteel:effectsofcomposition,yieldstrengthandH2 pressure[J].Metall.Trans.,1983,14A :881-888
[95]KamedaJ,McMahonJrCJ.TheeffectsofSb,SnandPonthestrengthofgrainboundariesinaNi-Crsteel[J].Metall.Trans.,1981,12A :31-37
[96]PowellDT ,ScullyJC .Stresscorrosioncrackingofalphatitaniumalloysatroomtemperature[J].Corrosion,1968,24:151-158
[97]LynchSP .Failuresofstructuresandcomponentsbyenvironmen tallyassistedcracking[J].EngngFailureAnalys,1994,1:77-90Z
[1] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[2] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[3] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[4] ZHANG Yao, GUO Chen, LIU Yanhui, HAO Meijuan, CHENG Shiming, CHENG Weili. Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[5] WEI Xiaoyang,MORADI Masoumeh,YANG Lijing,LV Zhanpeng,ZHENG Bizhang,SONG Zhenlun. Influence of Magnetic Field on Corrosion of Pure Cu in Artificial Seawater with Multispecies Aerobic Bacteria[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[6] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[7] OUYANG Yuejun,HU Ting,WANG Jiayin,XIE Zhihui. Electrochemical Deposition and Characterization of Layered Double Hydroxide Film on Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[8] Li LIU,Sirong YU. Effect of Gd Addition on Corrosion Behavior of AM60 Magnesium Alloy[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[9] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[10] Jiapeng LIAO,Xinqiang WU. Review of Notch Effect on Fatigue Behavior of Materials for LWR Plants in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 511-516.
[11] Yaqiong LI,Jingling MA,Guangxin WANG,Yujie ZHU,Yongfa SONG,Jingli ZHANG. Effect of Sodium Phosphate and Sodium Dodecylbenzene-sulfonate on Discharge Performance of AZ31 Magnesium Air Battery[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[12] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[13] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[14] Xuejun CUI, Jing PING. Research Progress of Microarc Oxidation for Corrosion Prevention of Mg-alloys[J]. 中国腐蚀与防护学报, 2018, 38(2): 87-104.
[15] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
No Suggested Reading articles found!