Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1253-1264    DOI: 10.11902/1005.4537.2024.408
Current Issue | Archive | Adv Search |
Effect of Surface Roughness, Concentration and Temperature of NaOH Solution on Corrosion Behavior of a Zr-based Metallic Glass
WANG Taotao1, XUE Rongjie1(), MA Xiaowei1, WAN Haofeng1, WANG Dongpeng2, LIU Zhenguang2
1 School of Materials Engineering, Jiangsu Institute of Technology, Changzhou 213001, China
2 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
Cite this article: 

WANG Taotao, XUE Rongjie, MA Xiaowei, WAN Haofeng, WANG Dongpeng, LIU Zhenguang. Effect of Surface Roughness, Concentration and Temperature of NaOH Solution on Corrosion Behavior of a Zr-based Metallic Glass. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1253-1264.

Download:  HTML  PDF(12540KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of temperature and concentration of NaOH solution, as well as the roughness of material on the electrochemical properties of a Zr-based metallic glass in NaOH solution were studied by means of mass loss measurement, electrochemical technology and scanning electron microscopy (SEM/EDS). The free corrosion rate of Zr-based metallic glass in 0.1 mol/L NaOH is 1.22 times that in 0.01 mol/L NaOH solution. With the increase of temperature, concentration and roughness, the Icorr of Zr-based metallic glass increases, the impedance and the corrosion resistance decrease. The corrosion products on the surface of Zr-based metallic glass increased, and the product corroded area increased. ZrO2, TiO2, NiO, CuO substrate oxides and Be(OH)2 corrosion products were formed on the surface of Vit1 after corrosion. As the temperature increases, the mobility of molecules and ions increases, making chemical reactions more likely to occur, and accelerating the dissolution and corrosion of metallic glasses. The increase of NaOH concentration and the acceleration of corrosion rate may be due to the fact that hydroxide ions (OH-) in highly concentrated alkaline solutions can react more effectively with the surface of metallic glasses, thereby accelerating corrosion. With the increase of roughness, the effective area of surface exposure involved in the corrosion reaction increases, and the corrosion reaction rate accelerates. After immersion, corrosion fluids accumulate on the surface of the alloy, resulting in an increase in local concentration differences, which lead to non-uniform corrosion and corrosion scarring.

Key words:  Zr-based metallic glass      electrochemistry      NaOH solution      corrosion property     
Received:  25 December 2024      32134.14.1005.4537.2024.408
ZTFLH:  TG172.5  
Fund: National Natural Science Foundation of China(51801083);Jiangsu Province University Innovation Training Program(202411463092Y)
Corresponding Authors:  XUE Rongjie, E-mail: xuerongjie@jsut.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.408     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1253

Fig.1  Mass loss rates and corrosion rates of Vit1 during immersion for 648 h in 0.01 and 0.1 mol/L NaOH solutions
Fig.2  Potentiodynamic polarization curves of Vit1 samples with different surface roughness after immersion in NaOH solutions under different conditions of concentration and temperature: (a) immersion treatment, (b) roughness
Experiment conditionsIcorr / A·cm-2Ecorr / mVRs / kΩ·cm2Rct / kΩ·cm2CPE / μF·cm2α
1: 0.01 mol/L-25 ℃2.6 × 10-9-3740.4025322.704.02280.91285
2: 0.01 mol/L-35 ℃3.6 × 10-9-3330.7885154.703.93630.90021
3: 0.1 mol/L-25 ℃9.3 × 10-9-3070.0402132.706.68470.90352
4: 0.1 mol/L-35 ℃1.13 × 10-8-1460.033517.727.17760.89177
5: IC 0.01 mol/L-25 ℃6.2 × 10-9-3710.220365.549.66450.90692
6: IC 0.01 mol/L-35 ℃8.1 × 10-9-1250.170211.8011.0130.91269
7: IC 0.1 mol/L-25 ℃8.35 × 10-8-2230.027201.1810.540.93691
8: IC 0.1 mol/L-35 ℃9.12 × 10-8-2300.031142.476.80360.93684
9: 0.01 mol/L-180#3.16 × 10-7-6020.263417.157.00380.87587
10: 0.01 mol/L-400#2.76 × 10-7-4710.008454.496.16130.94270
11: 0.01 mol/L-1200#1.54 × 10-7-4300.272494.228.58450.89133
12: 0.01 mol/L-3000#5.93 × 10-8-2710.060525.494.16020.93659
13: 0.01 mol/L-5000#3.29 × 10-8-4730.060647.695.18290.86688
14: 0.1 mol/L-180#4.05 × 10-7-4630.054222.779.18760.91008
15: 0.1 mol/L-400#3.00 × 10-7-4300.484256.695.85580.93849
16: 0.1 mol/L-1200#2.05 × 10-7-3400.051291.745.05110.92293
17: 0.1 mol/L-3000#1.27 × 10-7-4090.008358.466.13160.90838
18: 0.1 mol/L-5000#4.43 × 10-8-6040.016390.806.70740.94493
Table 1  Fitting electrochemical parameters of potentiodynamic polarization curves in Fig.2 and EIS in Fig.3
Fig.3  Nyquist (a-c), Bode (d-f) and phase (g-i) diagrams of Vit1 samples with different surface roughnesses after immersion in NaOH solutions under different conditions of concentration and temperature, the inset in Fig.3a shows correspon-ding equivalent circuit model
Fig.4  SEM surface images of Vit1 samples with different surface roughness after immersion in NaOH solutions under different conditions of concentration and temperature. 0.01 mol/L at 25 and 35 ℃ (a, b); 0.01 mol/L and 0.1 mol/L (c, h); 0.01 mol/L at 25 and 35 ℃ (d, e); 0.1 mol/L at 25 and 35 ℃ (f, g); 0.1 mol/L at 25 and 35 ℃ (i, j); roughness of 180#, 400#, 1200#, 3000#, 5000# in 0.01mol/L (k-o); roughness of 180#, 400#, 1200#, 3000#, 5000# in 0.1 mol/L (p-t)
Fig.5  SEM (a) and spectral dispersion (b) of a Vit1 sample which was immersed in 0.1 mol/L NaOH solution and then electrochemical experiment was carried out in 0.1 mol/L-35 ℃ NaOH solution; atomic percentage (c-f) graphs of substrate and corrosion product of Vit1 samples with different surface roughness after immersion in NaOH solutions under different conditions of concentration and temperature
Fig.6  XPS full spectrum (a) and fine spectra (b-f) of Zr, Be, Ti, Ni and Cu elements of Vit1 after electrochemical experiment in NaOH solution at 0.1 mol/L and 25 ℃
Fig.7  Schematic illustration of corrosion mechanism
[1] Ding S B, Xiang T F, Li C, et al. Fabrication of self-cleaning super-hydrophobic nickel/graphene hybrid film with improved corrosion resistance on mild steel [J]. Mater. Design, 2017, 117: 280
[2] Chen Y. Corrosion of buried metal pipelines in alkaline soil media [J]. Oil-Gas Fields Surf. Eng., 2014, 33(9): 92
陈 宇. 埋地金属管道在碱性土壤介质中的腐蚀 [J]. 油气田地面工程, 2014, 33(9): 92
[3] Islam J, Anwar R, Shareef M, et al. Rechargeable metal-metal alkaline batteries: recent advances, current issues and future research strategies [J]. J. Power Sources, 2023, 563: 232777
[4] Tang H M, Zhan C, Li Q, et al. Design and performance of molybdenum-cobalt-vanadium polymetallic composite materials for hydrogen production by alkaline water electrolysis [J]. Energy Res. Manag., 2024, 16(2): 43
唐红梅, 詹 聪, 李 琴 等. 钼-钴-钒多金属复合材料设计及碱性电解水制氢性能 [J]. 能源研究与管理, 2024, 16(2): 43
[5] Liu M M, Fan X F, Cui X Q, et al. Noble metal-modified copper surfaces for alkaline condition hydrogen evolution reaction [J]. J. Alloy. Compd., 2024, 1005: 175966
[6] Esfandiari N, Aliofkhazraei M, Colli A N, et al. Metal-based cathodes for hydrogen production by alkaline water electrolysis: review of materials, degradation mechanism, and durability tests [J]. Prog. Mater. Sci., 2024, 144: 101254
[7] Sun X. Design and electrochemical corrosion behavior of Zr-Ti-Ni-Cu-Be high entropy bulk metallic glasses [D]. Qingdao: China University of Petroleum (East China), 2019
孙 旭. Zr-Ti-Ni-Cu-Be系高熵非晶合金设计及电化学腐蚀行为 [D]. 青岛: 中国石油大学(华东), 2019
[8] He Z C, Qin T N, Ding Y, et al. Investigation of the corrosion resistance of alkaline electroless nickel plating on aluminum alloy [J]. Light Alloy Fabricat. Technol., 2009, 37(3): 44
贺忠臣, 秦铁男, 丁 毅 等. 6063铝合金碱性化学镀镍耐腐蚀性能研究 [J]. 轻合金加工技术, 2009, 37(3): 44
[9] Chen L, Li X. Electrochemical corrosion properties of Cu72Sn10-P10Ni8 amorphous ribbon [J]. Mater. Mech. Eng., 2015, 39(9): 53
陈 琳, 李 翔. Cu72Sn10P10Ni8非晶薄带的电化学腐蚀性能 [J]. 机械工程材料, 2015, 39(9): 53
[10] Suo Z Y, Gong A H, Wang X, et al. Corrosion behavior of Ti-Zr based bulk amorphous alloys in NaOH solution [J]. Met. Funct. Mater., 2016, 23(3): 42
索忠源, 龚安华, 王 鑫 等. Ti-Zr基块体非晶合金在NaOH溶液中的腐蚀研究 [J]. 金属功能材料, 2016, 23(3): 42
doi: 10.13228/j.boyuan.issn1005-8192.2015088
[11] Xue R J, Zhao L Z, Cai Y Q, et al. Correlation between boson peak and thermal expansion manifested by physical aging and high pressure [J]. Sci. China Phys. Mech. Astron., 2022, 65: 246111
[12] Nan D, Dong J H. Influence of temperature on corrosion behavior of five kinds of metal in thick alkali solution [J]. Chlor-Alkali Ind., 2007, (9): 40
楠 顶, 董俊慧. 温度对5种金属在浓碱中腐蚀行为的影响 [J]. 氯碱工业, 2007, (9): 40
[13] Zhao T L, Lu W, Lü H W, et al. Electrochemical corrosion behavior of 10# carbon steel in NaOH solution [J]. Corros. Prot., 2018, 39: 833
赵天雷, 路 伟, 吕海武 等. 10号碳钢在NaOH溶液中的腐蚀电化学行为 [J]. 腐蚀与防护, 2018, 39: 833
[14] Kisasoz A. Corrosion behavior of alloy AA6063-T4 in HCl and NaOH solutions [J]. Mater. Test., 2018, 60: 478
[15] Zhang Z Y, Long Y, Ye R C, et al. Effect of inhibitors on corrosion of gadolinium in water [J]. J. Chin. Soc. Rare Earths, 2005, 23: 400
张泽玉, 龙 毅, 叶荣昌 等. 缓蚀剂对金属钆在水介质中腐蚀行为的影响 [J]. 中国稀土学报, 2005, 23: 400
[16] Li F X. Studies on the structural relaxation and corrosion behavior of a Zr-based bulk metall glass [D]. Zhengzhou: Zhengzhou University, 2014
李凤鲜. Zr基金属玻璃的结构弛豫和腐蚀行为研究 [D]. 郑州: 郑州大学, 2014
[17] Kim H G, Jang H J. Electrochemical corrosion behaviors of amorphous Co69Fe4.5Ni1.5Si10B15 alloy [J]. Met. Mater. Int., 2011, 17: 783
[18] Wang L, Chao Y S. Corrosion behaviors of bulk amorphous Fe41Co7Cr15Mo14C15B6Y2 alloy in NaOH solution [J]. J. Funct. Mater., 2010, 41: 1849
王 莉, 晁月盛. 铁基块体非晶合金在NaOH溶液中的腐蚀行为 [J]. 功能材料, 2010, 41: 1849
[19] Jiang H R, Bochtler B, Frey M, et al. Equilibrium viscosity and structural change in the Cu47.5Zr45.1Al7.4 bulk glass-forming liquid [J]. Acta Mater., 2020, 184: 69
[20] Zhang C, Li X M, Liu S Q, et al. 3D printing of Zr-based bulk metallic glasses and components for potential biomedical applications [J]. J. Alloy. Compd., 2019, 790: 963
[21] Xue R J, Zhao L Z, Yi J J. Strain aging in metallic glasses [J]. Mater. Lett., 2022, 306: 130931
[22] Ma X W, Xue R J, Wang T T, et al. Comparison of corrosion resistance of Zr-based amorphous alloys and traditional alloys in seawater [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 949
马晓伟, 薛荣洁, 王涛涛 等. 锆基非晶合金与传统合金在海水中的耐腐蚀性能对比研究 [J]. 中国腐蚀与防护学报, 2024, 44: 949
doi: 10.11902/1005.4537.2023.297
[23] Jiang J, Wang Z B, Zheng Y G, et al. Effect of oxygen impurity on corrosion behavior of a Zr-based bulk metallic glass in 0.5 M H2SO4 and 0.5 M NaOH solutions [J]. Mater. Lett., 2023, 330: 133231
[24] Tang J N, Zhang Z Y, Lin Y J, et al. Corrosion behaviors of Zr-based metallic glass Zr0.55Cu0.30Al0.10Ni0.05)99Y1 [J]. Special Cast. Nonferrous Alloy., 2018, 38: 1145
汤迦南, 张志英, 林耀军 等. (Zr0.55Cu0.30Al0.10Ni0.05)99Y1非晶合金的腐蚀行为 [J]. 特种铸造及有色合金, 2018, 38: 1145
doi: 10.15980/j.tzzz.2018.10.027
[25] Wang C, Zhang Q S, Jiang F, et al. Corrosion behavior of Zr55Al10Cu30Ni5 amorphous alloy in NaOH solution [J]. Rare Met. Mater. Eng., 2003, 32: 814
王 成, 张庆生, 江 峰 等. Zr55Al10Cu30Ni5非晶合金在NaOH溶液中的腐蚀行为 [J]. 稀有金属材料与工程, 2003, 32: 814
[26] Huang J S, Liu Y, Chen S Q, et al. Progress and application of Zr-based amorphous alloys [J]. Chin. J. Nonferrous Met., 2003, 13: 1321
黄劲松, 刘 咏, 陈仕奇 等. 锆基非晶合金的研究进展与应用 [J]. 中国有色金属学报, 2003, 13: 1321
[27] Zhao B W. Behavior and mechanism of catalytic degradation of dyes by CuZr-based metallic glasses and derivative nanocomposites [D]. Hefei: University of Science and Technology of China, 2022
赵博文. CuZr基非晶合金及衍生纳米复合物催化降解染料的行为与机制研究 [D]. 合肥: 中国科学技术大学, 2022
[28] Duan Y G, Ding Y Q, Zhang L, et al. Biocompatibility of Ti35-Nb3Zr2Ta, a new beta-titanium alloy, as joint prosthesis material [J]. Chin. J. Tissue Eng. Res., 2015, 19: 5536
段永刚, 丁英奇, 张 龙 等. 新型β钛合金Ti35N3Zr2Ta在人工关节假体应用中的生物相容性 [J]. 中国组织工程研究, 2015, 19: 5536
[29] Tiwari K, Blanquer A, Pavan C, et al. Surface modification of Ti40Cu40Zr11Fe3Sn3Ag3 amorphous alloy for enhanced biocompatibility in implant applications [J]. J. Mater. Res. Technol., 2024, 30: 2333
[30] Cui H L, Zhao H. Inorganic Chemistry [M]. Xi'an: Fourth Military Medical University Press, 2007: 64
崔华良, 赵 华. 无机化学 [M]. 西安: 第四军医大学出版社, 2007: 64
[31] Huang Y J, Guo Y Z, Fan H B, et al. Synthesis of Fe-Cr-Mo-C-B amorphous coating with high corrosion resistance [J]. Mater. Lett., 2012, 89: 229
[32] Xu S M, Liu H, Wu X, et al. Study of conductivity characteristics of ternary solutions KI/LiCl/LiBr-water-ethanol [J]. J. Dalian Univ. Technol., 2017, 57: 23
徐士鸣, 刘 欢, 吴 曦 等. KI/LiCl/LiBr-水-乙醇三元体系电导率特性研究 [J]. 大连理工大学学报, 2017, 57: 23
[33] Jensen F. Activation energies and the Arrhenius equation [J]. Qual. Reliab. Eng. Int., 1985, 1(1): 13
[34] Chen L M, Cheng M X, Xiao X F, et al. Measurement of the relationship between conductivity of salt solution and concentration and temperature [J]. Lab. Res. Explor., 2010, 29(5): 39
陈丽梅, 程敏熙, 肖晓芳 等. 盐溶液电导率与浓度和温度的关系测量 [J]. 实验室研究与探索, 2010, 29(5): 39
[35] Ye F X, Yao J, Liu Y F, et al. Erosion corrosion characteristics of X80 pipeline steel in two-phase flow under the influence of multiple factors [J]. Chem. Ind. Eng. Progress, 2021, 40: 6450
叶福相, 姚 军, 刘玉发 等. 多因素影响下的X80管道钢两相流冲蚀腐蚀特性 [J]. 化工进展, 2021, 40: 6450
doi: 10.16085/j.issn.1000-6613.2021-1370
[36] Pan Y, Wu C R, Chen S W, et al. Research progress of oxygen reduction catalytic materials and catalytic active sites [J]. Mater. Rep., 2019, 33(suppl. 1) : 41
潘 云, 吴承仁, 陈绍维 等. 氧还原催化材料与催化机理及活性位点的研究进展 [J]. 材料导报, 2019, 33(): 41
[37] Ding G Q, Li X Y, Zhang B, et al. Variation of free corrosion potential of several metallic materials in natural seawater [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 543
丁国清, 李向阳, 张 波 等. 金属材料在天然海水中的腐蚀电位及其变化规律 [J]. 中国腐蚀与防护学报, 2019, 39: 543
doi: 10.11902/1005.4537.2019.233
[38] Jia B L, Cao F H, Liu W J, et al. Review on electrochemical detection techniques for corrosion of reinforcing steel in concrete [J]. J. Chin. Mater. Sci. Eng., 2010, 28: 791
贾丙丽, 曹发和, 刘文娟 等. 钢筋混凝土腐蚀的电化学检测研究现状 [J]. 材料科学与工程学报, 2010, 28: 791
[39] Dai C D, Fu Y, Guo J X, et al. Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering [J]. Int. J. Miner. Metall. Mater., 2020, 27: 1388
[40] Hu J F, Xie C X, Tao P J. Effect of structural state on corrosion properties of all metal Fe based amorphous alloys [J]. Mater. Rep., 2022, 36(suppl. 1) : 360
胡家富, 谢春晓, 陶平均. 结构状态对全金属Fe基非晶合金腐蚀性能的影响 [J]. 材料导报, 2022, 36(): 360
[41] Wang D P, Li X, Chen Z. et al. Susceptibility of chloride ion concentration, temperature, and surface roughness on pitting corrosion of CoCrFeNi medium-entropy alloy [J]. Mater. Corros., 2021, 73: 106
[42] Zhong P, Shi Z Q, Wang Y F, et al. Electrochemical corrosion performance of Zr2TiCuNiBe high-entropy metallic glass [J]. J. Netshape Forming Eng., 2023, 15(5): 139
钟 鹏, 石志强, 王彦芳 等. Zr2TiCuNiBe高熵非晶合金的电化学腐蚀行为 [J]. 精密成形工程, 2023, 15(5): 139
[43] Zhang W, Cao W K, Yang J L. Effects of temperature and chloride ion concentration on electrochemical corrosion of Cr13 tubing in completion fluid [J]. Corros. Prot. Petrochem. Ind., 2023, 40(4): 1
张 伟, 曹文凯, 阳俊龙. 温度和Cl-浓度对完井液中Cr13油管的电化学腐蚀的影响 [J]. 石油化工腐蚀与防护, 2023, 40(4): 1
[44] Song Y L, Suo Z Y, Ma C J, et al. Glass forming ability and corrosion behavior of Ti-Zr-Be-Cu-Co bulk metallic glass [J]. Rare Met. Mater. Eng., 2013, 42: 2127
宋艳玲, 索忠源, 马长捷 等. Ti-Zr-Be-Cu-Co块体非晶合金形成能力及其耐蚀性的研究 [J]. 稀有金属材料与工程, 2013, 42: 2127
[45] Liao C H, Zhou J, Shen H. Electrochemical corrosion behaviors before and after laser polishing of additive manufactured TC4 titanium alloy [J]. Chin. J. Lasers, 2020, 47: 0102003
廖聪豪, 周 静, 沈 洪. 增材制造TC4钛合金在激光抛光前后的电化学腐蚀性能 [J]. 中国激光, 2020, 47: 0102003
[46] Li G Q, Zheng L J, Li H X. Corrosion behavior of the bulk amorphous Mg65Cu25Gd10 alloy [J]. Rare Met. Mater. Eng., 2009, 38: 110
李国强, 郑立静, 李焕喜. Mg65Cu25Gd10非晶合金的腐蚀行为 [J]. 稀有金属材料与工程, 2009, 38: 110
[47] Shang S Z, Kong M L, Li Y. Corrsion behavior of Zr53.5Cu26.5Ni5-Al12Ag3 bulk metallic glass in NaOH [J]. J. Shenyang Inst. Chem. Technol., 2012, 26: 199
尚世智, 孔美玲, 李 云. 锆基非晶合金在NaOH溶液中的腐蚀行为 [J]. 沈阳化工大学学报, 2012, 26: 199
[48] Li L H, Yang J, Li H Y. Quantifying the microstructure and phase assemblage of alkali-activated fly ash/slag materials by EDS mapping analysis [J]. Mater. Design, 2023, 234: 112320
[49] Guan P F, Wang B, Wu Y C, et al. Heterogeneity: The soul of metallic glasses [J]. Acta Phys. Sin., 2017, 66: 176112
管鹏飞, 王 兵, 吴义成 等. 不均匀性: 非晶合金的灵魂 [J]. 物理学报, 2017, 66: 176112
[50] Liang T, Yan R. Anti-Chemical Detergent Equipment Corrosion and Protection [M]. Beijing: Publishing House of Electronics Industry, 2010
梁 婷, 阎 瑞. 防化洗消装备腐蚀与防护 [M]. 北京: 电子工业出版社, 2010
[51] Qin W, Nam C, Li H L, et al. Tetragonal phase stability in ZrO2 film formed on zirconium alloys and its effects on corrosion resistance [J]. Acta Mater., 2007, 55: 1695
[1] LIU Shuo, WU Lipeng, LI Jinglun, XING Jinzheng, LI Sai. Corrosion Behavior of Steel Rebar in Iron Tailings-based Geopolymers in Saline-Alkali Environment[J]. 中国腐蚀与防护学报, 2025, 45(5): 1371-1380.
[2] LI Xiangdong, LIU Changhao, ZHANG Chi, CHEN Wenjuan, CUI Chenyue, ZHU Yongwen, WANG Shushu. Electrodeposition and Performance of WC-Zn Composite Coatings on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2025, 45(3): 795-802.
[3] YANG Zhenyu, JI Chao, GUO Liya, XU Run, PENG Wei, ZHAO Hongshan, WEI Xicheng, DONG Han. Initial Corrosion Behavior of Several Pure Irons and Steels in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(2): 469-478.
[4] JIN Zhenting, SONG Qining, LIU Qi, PENG Chunlan, XU Nan, LU Qiqing, BAO Yefeng, ZHAO Lijuan, ZHAO Jianhua. Long-term Corrosion Behavior of Three Cu-alloys in 3.5%NaCl Solutions with Different pH Values[J]. 中国腐蚀与防护学报, 2025, 45(2): 506-514.
[5] XIE Wenzhen, WANG Zhenyu, HAN En-Hou. Passivation Behavior of Corrosion Resistant Rebar Steels as Bare Steels in a Simulated Concrete Pore Fluid and as Rebar Steels Embedded in Concrete Made of Cement and Sea-sand in a Simulated Seawater[J]. 中国腐蚀与防护学报, 2024, 44(6): 1454-1464.
[6] ZHANG Yani, WANG Simin, FAN Bing. Corrosion and Passivation Behavior of TC4 Ti-alloy in a Simulated Downhole Liquid in High-temperature and High-pressed O2 + CO2 Environment[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[7] ZHU Liyang, CHEN Junquan, ZHANG Xinxin, DONG Zehua, CAI Guangyi. Research Progress of Effect of Magnetic Field on Metal Corrosion[J]. 中国腐蚀与防护学报, 2024, 44(5): 1117-1124.
[8] FENG Shaoyu, ZHOU Zhaohui, YANG Lanlan, QIAO Yanxin, WANG Jinlong, WANG Fuhui. Electrochemical and Wear Behavior of TC4 Alloy in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1243-1254.
[9] PENG Wenshan, XING Shaohua, QIAN Yao, LIN Cunguo, HOU Jian, ZHANG Dalei. Effect of Flowing Seawater on Corrosion Characteristics of Passivation Film on TA2 Pure-Ti Pipes[J]. 中国腐蚀与防护学报, 2024, 44(4): 1038-1046.
[10] XING Shaohua, PENG Wenshan, QIAN Yao, LI Xiangbo, MA Li, ZHANG Dalei. Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[11] DAI Wei, LIU Yuanyuan, TU Wenrui, SUN Yangting, LI Jin, JIANG Yiming. Corrosion Behavior of Ag/Sn Galvanic Couple at Applied Potential[J]. 中国腐蚀与防护学报, 2024, 44(3): 700-706.
[12] WANG Tongtong, ZHANG Juanrui, GAO Yun, GAO Rongjie. Preparation of Lotus Root-like TiO2 Nanotube Arrays in NH4F-(NH4)2SO4 Composite Electrolyte and Its Photogenerated Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2024, 44(2): 389-395.
[13] LI Wenjie, CHE Xiaoyu, TANG Yongcun, LIU Guangming, TIAN Wenming, HE Hualin, LIU Chenhui. Effect of Plastic Deformation Processing on Corrosion Behavior of Pure Zinc in a Leaching Solution of Soil at Tianjin[J]. 中国腐蚀与防护学报, 2024, 44(2): 497-504.
[14] WANG Pengjie, SONG Yuhao, FAN Lin, DENG Kuanhai, LI Zhonghui, MEI Zongbin, GUO Lei, LIN Yuanhua. Inhibition of Q235 Steel in 1 mol/L HCl Solution by a New Efficient Imidazolium Schiff Base Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2024, 44(1): 59-70.
[15] LI Danhong, YANG Tengxun, SUN Tianxiang, LI Xinglinmao, MA Chengcheng, ZHANG Yue, CHEN Shougang. Preparation and Anti-corrosion Properties of Silica Aerogel-modified Polyurethane Composite Coatings[J]. 中国腐蚀与防护学报, 2024, 44(1): 167-174.
No Suggested Reading articles found!