|
|
|
| Effect of Surface Roughness, Concentration and Temperature of NaOH Solution on Corrosion Behavior of a Zr-based Metallic Glass |
WANG Taotao1, XUE Rongjie1( ), MA Xiaowei1, WAN Haofeng1, WANG Dongpeng2, LIU Zhenguang2 |
1 School of Materials Engineering, Jiangsu Institute of Technology, Changzhou 213001, China 2 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China |
|
Cite this article:
WANG Taotao, XUE Rongjie, MA Xiaowei, WAN Haofeng, WANG Dongpeng, LIU Zhenguang. Effect of Surface Roughness, Concentration and Temperature of NaOH Solution on Corrosion Behavior of a Zr-based Metallic Glass. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1253-1264.
|
|
|
Abstract The effect of temperature and concentration of NaOH solution, as well as the roughness of material on the electrochemical properties of a Zr-based metallic glass in NaOH solution were studied by means of mass loss measurement, electrochemical technology and scanning electron microscopy (SEM/EDS). The free corrosion rate of Zr-based metallic glass in 0.1 mol/L NaOH is 1.22 times that in 0.01 mol/L NaOH solution. With the increase of temperature, concentration and roughness, the Icorr of Zr-based metallic glass increases, the impedance and the corrosion resistance decrease. The corrosion products on the surface of Zr-based metallic glass increased, and the product corroded area increased. ZrO2, TiO2, NiO, CuO substrate oxides and Be(OH)2 corrosion products were formed on the surface of Vit1 after corrosion. As the temperature increases, the mobility of molecules and ions increases, making chemical reactions more likely to occur, and accelerating the dissolution and corrosion of metallic glasses. The increase of NaOH concentration and the acceleration of corrosion rate may be due to the fact that hydroxide ions (OH-) in highly concentrated alkaline solutions can react more effectively with the surface of metallic glasses, thereby accelerating corrosion. With the increase of roughness, the effective area of surface exposure involved in the corrosion reaction increases, and the corrosion reaction rate accelerates. After immersion, corrosion fluids accumulate on the surface of the alloy, resulting in an increase in local concentration differences, which lead to non-uniform corrosion and corrosion scarring.
|
|
Received: 25 December 2024
32134.14.1005.4537.2024.408
|
|
|
| Fund: National Natural Science Foundation of China(51801083);Jiangsu Province University Innovation Training Program(202411463092Y) |
Corresponding Authors:
XUE Rongjie, E-mail: xuerongjie@jsut.edu.cn
|
| [1] |
Ding S B, Xiang T F, Li C, et al. Fabrication of self-cleaning super-hydrophobic nickel/graphene hybrid film with improved corrosion resistance on mild steel [J]. Mater. Design, 2017, 117: 280
|
| [2] |
Chen Y. Corrosion of buried metal pipelines in alkaline soil media [J]. Oil-Gas Fields Surf. Eng., 2014, 33(9): 92
|
|
陈 宇. 埋地金属管道在碱性土壤介质中的腐蚀 [J]. 油气田地面工程, 2014, 33(9): 92
|
| [3] |
Islam J, Anwar R, Shareef M, et al. Rechargeable metal-metal alkaline batteries: recent advances, current issues and future research strategies [J]. J. Power Sources, 2023, 563: 232777
|
| [4] |
Tang H M, Zhan C, Li Q, et al. Design and performance of molybdenum-cobalt-vanadium polymetallic composite materials for hydrogen production by alkaline water electrolysis [J]. Energy Res. Manag., 2024, 16(2): 43
|
|
唐红梅, 詹 聪, 李 琴 等. 钼-钴-钒多金属复合材料设计及碱性电解水制氢性能 [J]. 能源研究与管理, 2024, 16(2): 43
|
| [5] |
Liu M M, Fan X F, Cui X Q, et al. Noble metal-modified copper surfaces for alkaline condition hydrogen evolution reaction [J]. J. Alloy. Compd., 2024, 1005: 175966
|
| [6] |
Esfandiari N, Aliofkhazraei M, Colli A N, et al. Metal-based cathodes for hydrogen production by alkaline water electrolysis: review of materials, degradation mechanism, and durability tests [J]. Prog. Mater. Sci., 2024, 144: 101254
|
| [7] |
Sun X. Design and electrochemical corrosion behavior of Zr-Ti-Ni-Cu-Be high entropy bulk metallic glasses [D]. Qingdao: China University of Petroleum (East China), 2019
|
|
孙 旭. Zr-Ti-Ni-Cu-Be系高熵非晶合金设计及电化学腐蚀行为 [D]. 青岛: 中国石油大学(华东), 2019
|
| [8] |
He Z C, Qin T N, Ding Y, et al. Investigation of the corrosion resistance of alkaline electroless nickel plating on aluminum alloy [J]. Light Alloy Fabricat. Technol., 2009, 37(3): 44
|
|
贺忠臣, 秦铁男, 丁 毅 等. 6063铝合金碱性化学镀镍耐腐蚀性能研究 [J]. 轻合金加工技术, 2009, 37(3): 44
|
| [9] |
Chen L, Li X. Electrochemical corrosion properties of Cu72Sn10-P10Ni8 amorphous ribbon [J]. Mater. Mech. Eng., 2015, 39(9): 53
|
|
陈 琳, 李 翔. Cu72Sn10P10Ni8非晶薄带的电化学腐蚀性能 [J]. 机械工程材料, 2015, 39(9): 53
|
| [10] |
Suo Z Y, Gong A H, Wang X, et al. Corrosion behavior of Ti-Zr based bulk amorphous alloys in NaOH solution [J]. Met. Funct. Mater., 2016, 23(3): 42
|
|
索忠源, 龚安华, 王 鑫 等. Ti-Zr基块体非晶合金在NaOH溶液中的腐蚀研究 [J]. 金属功能材料, 2016, 23(3): 42
doi: 10.13228/j.boyuan.issn1005-8192.2015088
|
| [11] |
Xue R J, Zhao L Z, Cai Y Q, et al. Correlation between boson peak and thermal expansion manifested by physical aging and high pressure [J]. Sci. China Phys. Mech. Astron., 2022, 65: 246111
|
| [12] |
Nan D, Dong J H. Influence of temperature on corrosion behavior of five kinds of metal in thick alkali solution [J]. Chlor-Alkali Ind., 2007, (9): 40
|
|
楠 顶, 董俊慧. 温度对5种金属在浓碱中腐蚀行为的影响 [J]. 氯碱工业, 2007, (9): 40
|
| [13] |
Zhao T L, Lu W, Lü H W, et al. Electrochemical corrosion behavior of 10# carbon steel in NaOH solution [J]. Corros. Prot., 2018, 39: 833
|
|
赵天雷, 路 伟, 吕海武 等. 10号碳钢在NaOH溶液中的腐蚀电化学行为 [J]. 腐蚀与防护, 2018, 39: 833
|
| [14] |
Kisasoz A. Corrosion behavior of alloy AA6063-T4 in HCl and NaOH solutions [J]. Mater. Test., 2018, 60: 478
|
| [15] |
Zhang Z Y, Long Y, Ye R C, et al. Effect of inhibitors on corrosion of gadolinium in water [J]. J. Chin. Soc. Rare Earths, 2005, 23: 400
|
|
张泽玉, 龙 毅, 叶荣昌 等. 缓蚀剂对金属钆在水介质中腐蚀行为的影响 [J]. 中国稀土学报, 2005, 23: 400
|
| [16] |
Li F X. Studies on the structural relaxation and corrosion behavior of a Zr-based bulk metall glass [D]. Zhengzhou: Zhengzhou University, 2014
|
|
李凤鲜. Zr基金属玻璃的结构弛豫和腐蚀行为研究 [D]. 郑州: 郑州大学, 2014
|
| [17] |
Kim H G, Jang H J. Electrochemical corrosion behaviors of amorphous Co69Fe4.5Ni1.5Si10B15 alloy [J]. Met. Mater. Int., 2011, 17: 783
|
| [18] |
Wang L, Chao Y S. Corrosion behaviors of bulk amorphous Fe41Co7Cr15Mo14C15B6Y2 alloy in NaOH solution [J]. J. Funct. Mater., 2010, 41: 1849
|
|
王 莉, 晁月盛. 铁基块体非晶合金在NaOH溶液中的腐蚀行为 [J]. 功能材料, 2010, 41: 1849
|
| [19] |
Jiang H R, Bochtler B, Frey M, et al. Equilibrium viscosity and structural change in the Cu47.5Zr45.1Al7.4 bulk glass-forming liquid [J]. Acta Mater., 2020, 184: 69
|
| [20] |
Zhang C, Li X M, Liu S Q, et al. 3D printing of Zr-based bulk metallic glasses and components for potential biomedical applications [J]. J. Alloy. Compd., 2019, 790: 963
|
| [21] |
Xue R J, Zhao L Z, Yi J J. Strain aging in metallic glasses [J]. Mater. Lett., 2022, 306: 130931
|
| [22] |
Ma X W, Xue R J, Wang T T, et al. Comparison of corrosion resistance of Zr-based amorphous alloys and traditional alloys in seawater [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 949
|
|
马晓伟, 薛荣洁, 王涛涛 等. 锆基非晶合金与传统合金在海水中的耐腐蚀性能对比研究 [J]. 中国腐蚀与防护学报, 2024, 44: 949
doi: 10.11902/1005.4537.2023.297
|
| [23] |
Jiang J, Wang Z B, Zheng Y G, et al. Effect of oxygen impurity on corrosion behavior of a Zr-based bulk metallic glass in 0.5 M H2SO4 and 0.5 M NaOH solutions [J]. Mater. Lett., 2023, 330: 133231
|
| [24] |
Tang J N, Zhang Z Y, Lin Y J, et al. Corrosion behaviors of Zr-based metallic glass Zr0.55Cu0.30Al0.10Ni0.05)99Y1 [J]. Special Cast. Nonferrous Alloy., 2018, 38: 1145
|
|
汤迦南, 张志英, 林耀军 等. (Zr0.55Cu0.30Al0.10Ni0.05)99Y1非晶合金的腐蚀行为 [J]. 特种铸造及有色合金, 2018, 38: 1145
doi: 10.15980/j.tzzz.2018.10.027
|
| [25] |
Wang C, Zhang Q S, Jiang F, et al. Corrosion behavior of Zr55Al10Cu30Ni5 amorphous alloy in NaOH solution [J]. Rare Met. Mater. Eng., 2003, 32: 814
|
|
王 成, 张庆生, 江 峰 等. Zr55Al10Cu30Ni5非晶合金在NaOH溶液中的腐蚀行为 [J]. 稀有金属材料与工程, 2003, 32: 814
|
| [26] |
Huang J S, Liu Y, Chen S Q, et al. Progress and application of Zr-based amorphous alloys [J]. Chin. J. Nonferrous Met., 2003, 13: 1321
|
|
黄劲松, 刘 咏, 陈仕奇 等. 锆基非晶合金的研究进展与应用 [J]. 中国有色金属学报, 2003, 13: 1321
|
| [27] |
Zhao B W. Behavior and mechanism of catalytic degradation of dyes by CuZr-based metallic glasses and derivative nanocomposites [D]. Hefei: University of Science and Technology of China, 2022
|
|
赵博文. CuZr基非晶合金及衍生纳米复合物催化降解染料的行为与机制研究 [D]. 合肥: 中国科学技术大学, 2022
|
| [28] |
Duan Y G, Ding Y Q, Zhang L, et al. Biocompatibility of Ti35-Nb3Zr2Ta, a new beta-titanium alloy, as joint prosthesis material [J]. Chin. J. Tissue Eng. Res., 2015, 19: 5536
|
|
段永刚, 丁英奇, 张 龙 等. 新型β钛合金Ti35N3Zr2Ta在人工关节假体应用中的生物相容性 [J]. 中国组织工程研究, 2015, 19: 5536
|
| [29] |
Tiwari K, Blanquer A, Pavan C, et al. Surface modification of Ti40Cu40Zr11Fe3Sn3Ag3 amorphous alloy for enhanced biocompatibility in implant applications [J]. J. Mater. Res. Technol., 2024, 30: 2333
|
| [30] |
Cui H L, Zhao H. Inorganic Chemistry [M]. Xi'an: Fourth Military Medical University Press, 2007: 64
|
|
崔华良, 赵 华. 无机化学 [M]. 西安: 第四军医大学出版社, 2007: 64
|
| [31] |
Huang Y J, Guo Y Z, Fan H B, et al. Synthesis of Fe-Cr-Mo-C-B amorphous coating with high corrosion resistance [J]. Mater. Lett., 2012, 89: 229
|
| [32] |
Xu S M, Liu H, Wu X, et al. Study of conductivity characteristics of ternary solutions KI/LiCl/LiBr-water-ethanol [J]. J. Dalian Univ. Technol., 2017, 57: 23
|
|
徐士鸣, 刘 欢, 吴 曦 等. KI/LiCl/LiBr-水-乙醇三元体系电导率特性研究 [J]. 大连理工大学学报, 2017, 57: 23
|
| [33] |
Jensen F. Activation energies and the Arrhenius equation [J]. Qual. Reliab. Eng. Int., 1985, 1(1): 13
|
| [34] |
Chen L M, Cheng M X, Xiao X F, et al. Measurement of the relationship between conductivity of salt solution and concentration and temperature [J]. Lab. Res. Explor., 2010, 29(5): 39
|
|
陈丽梅, 程敏熙, 肖晓芳 等. 盐溶液电导率与浓度和温度的关系测量 [J]. 实验室研究与探索, 2010, 29(5): 39
|
| [35] |
Ye F X, Yao J, Liu Y F, et al. Erosion corrosion characteristics of X80 pipeline steel in two-phase flow under the influence of multiple factors [J]. Chem. Ind. Eng. Progress, 2021, 40: 6450
|
|
叶福相, 姚 军, 刘玉发 等. 多因素影响下的X80管道钢两相流冲蚀腐蚀特性 [J]. 化工进展, 2021, 40: 6450
doi: 10.16085/j.issn.1000-6613.2021-1370
|
| [36] |
Pan Y, Wu C R, Chen S W, et al. Research progress of oxygen reduction catalytic materials and catalytic active sites [J]. Mater. Rep., 2019, 33(suppl. 1) : 41
|
|
潘 云, 吴承仁, 陈绍维 等. 氧还原催化材料与催化机理及活性位点的研究进展 [J]. 材料导报, 2019, 33(): 41
|
| [37] |
Ding G Q, Li X Y, Zhang B, et al. Variation of free corrosion potential of several metallic materials in natural seawater [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 543
|
|
丁国清, 李向阳, 张 波 等. 金属材料在天然海水中的腐蚀电位及其变化规律 [J]. 中国腐蚀与防护学报, 2019, 39: 543
doi: 10.11902/1005.4537.2019.233
|
| [38] |
Jia B L, Cao F H, Liu W J, et al. Review on electrochemical detection techniques for corrosion of reinforcing steel in concrete [J]. J. Chin. Mater. Sci. Eng., 2010, 28: 791
|
|
贾丙丽, 曹发和, 刘文娟 等. 钢筋混凝土腐蚀的电化学检测研究现状 [J]. 材料科学与工程学报, 2010, 28: 791
|
| [39] |
Dai C D, Fu Y, Guo J X, et al. Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering [J]. Int. J. Miner. Metall. Mater., 2020, 27: 1388
|
| [40] |
Hu J F, Xie C X, Tao P J. Effect of structural state on corrosion properties of all metal Fe based amorphous alloys [J]. Mater. Rep., 2022, 36(suppl. 1) : 360
|
|
胡家富, 谢春晓, 陶平均. 结构状态对全金属Fe基非晶合金腐蚀性能的影响 [J]. 材料导报, 2022, 36(): 360
|
| [41] |
Wang D P, Li X, Chen Z. et al. Susceptibility of chloride ion concentration, temperature, and surface roughness on pitting corrosion of CoCrFeNi medium-entropy alloy [J]. Mater. Corros., 2021, 73: 106
|
| [42] |
Zhong P, Shi Z Q, Wang Y F, et al. Electrochemical corrosion performance of Zr2TiCuNiBe high-entropy metallic glass [J]. J. Netshape Forming Eng., 2023, 15(5): 139
|
|
钟 鹏, 石志强, 王彦芳 等. Zr2TiCuNiBe高熵非晶合金的电化学腐蚀行为 [J]. 精密成形工程, 2023, 15(5): 139
|
| [43] |
Zhang W, Cao W K, Yang J L. Effects of temperature and chloride ion concentration on electrochemical corrosion of Cr13 tubing in completion fluid [J]. Corros. Prot. Petrochem. Ind., 2023, 40(4): 1
|
|
张 伟, 曹文凯, 阳俊龙. 温度和Cl-浓度对完井液中Cr13油管的电化学腐蚀的影响 [J]. 石油化工腐蚀与防护, 2023, 40(4): 1
|
| [44] |
Song Y L, Suo Z Y, Ma C J, et al. Glass forming ability and corrosion behavior of Ti-Zr-Be-Cu-Co bulk metallic glass [J]. Rare Met. Mater. Eng., 2013, 42: 2127
|
|
宋艳玲, 索忠源, 马长捷 等. Ti-Zr-Be-Cu-Co块体非晶合金形成能力及其耐蚀性的研究 [J]. 稀有金属材料与工程, 2013, 42: 2127
|
| [45] |
Liao C H, Zhou J, Shen H. Electrochemical corrosion behaviors before and after laser polishing of additive manufactured TC4 titanium alloy [J]. Chin. J. Lasers, 2020, 47: 0102003
|
|
廖聪豪, 周 静, 沈 洪. 增材制造TC4钛合金在激光抛光前后的电化学腐蚀性能 [J]. 中国激光, 2020, 47: 0102003
|
| [46] |
Li G Q, Zheng L J, Li H X. Corrosion behavior of the bulk amorphous Mg65Cu25Gd10 alloy [J]. Rare Met. Mater. Eng., 2009, 38: 110
|
|
李国强, 郑立静, 李焕喜. Mg65Cu25Gd10非晶合金的腐蚀行为 [J]. 稀有金属材料与工程, 2009, 38: 110
|
| [47] |
Shang S Z, Kong M L, Li Y. Corrsion behavior of Zr53.5Cu26.5Ni5-Al12Ag3 bulk metallic glass in NaOH [J]. J. Shenyang Inst. Chem. Technol., 2012, 26: 199
|
|
尚世智, 孔美玲, 李 云. 锆基非晶合金在NaOH溶液中的腐蚀行为 [J]. 沈阳化工大学学报, 2012, 26: 199
|
| [48] |
Li L H, Yang J, Li H Y. Quantifying the microstructure and phase assemblage of alkali-activated fly ash/slag materials by EDS mapping analysis [J]. Mater. Design, 2023, 234: 112320
|
| [49] |
Guan P F, Wang B, Wu Y C, et al. Heterogeneity: The soul of metallic glasses [J]. Acta Phys. Sin., 2017, 66: 176112
|
|
管鹏飞, 王 兵, 吴义成 等. 不均匀性: 非晶合金的灵魂 [J]. 物理学报, 2017, 66: 176112
|
| [50] |
Liang T, Yan R. Anti-Chemical Detergent Equipment Corrosion and Protection [M]. Beijing: Publishing House of Electronics Industry, 2010
|
|
梁 婷, 阎 瑞. 防化洗消装备腐蚀与防护 [M]. 北京: 电子工业出版社, 2010
|
| [51] |
Qin W, Nam C, Li H L, et al. Tetragonal phase stability in ZrO2 film formed on zirconium alloys and its effects on corrosion resistance [J]. Acta Mater., 2007, 55: 1695
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|