Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (2): 319-326    DOI: 10.11902/1005.4537.2024.229
Current Issue | Archive | Adv Search |
Research Progress on Mechanical Properties of Polyethylene Pipes in Hydrogen Containing Environment
YANG Peng1, LI Jingfa1(), ZHENG Dukui2, YU Bo2, ZHAO Jie1, LI Jianli1, DUAN Pengfei3, LI Luling3
1.School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
2.School of Petroleum Engineering, Yangtze University, Wuhan 430100, China
3.Shenzhen Gas Corporation Ltd., Shenzhen 518049, China
Cite this article: 

YANG Peng, LI Jingfa, ZHENG Dukui, YU Bo, ZHAO Jie, LI Jianli, DUAN Pengfei, LI Luling. Research Progress on Mechanical Properties of Polyethylene Pipes in Hydrogen Containing Environment. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 319-326.

Download:  HTML  PDF(3026KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hydrogen energy, as a clean energy source, has attracted much attention and is now a major focus in the energy field. Transporting hydrogen to user terminals via the existing urban gas polyethylene pipelines is a key approach for promoting the large-scale utilization of hydrogen energy. However, prolonged exposure of polyethylene pipes to hydrogen environments may cause irreversible changes to their mechanical properties, potentially compromising the transportation safety. At present, research on the mechanical properties of polyethylene pipes in hydrogen environments is still in its early stages in China. This article reviews the recent progress in understanding the influence of hydrogen environments on the mechanical properties of polyethylene pipes. By systematically analyzing the results of tensile, creep, fracture, and fatigue tests of polyethylene pipes in environments with or without hydrogen respectively, the impact of hydrogen on the mechanical properties of polyethylene pipes is summarized and discussed. The findings indicate that lower hydrogen pressures presented negligible effect on mechanical properties of polyethylene pipes is, while significant changes occurred in high-pressure hydrogen environments, i.e. the mechanical properties of polyethylene pipes will undergo significant changes. However, it remains unclear whether these changes are driven by hydrogen itself or environmental pressure. This review provides valuable insights for advancing hydrogen transportation technologies using urban polyethylene pipelines.

Key words:  hydrogen environment      polyethylene pipe      tensile      creep      fracture      fatigue     
Received:  29 July 2024      32134.14.1005.4537.2024.229
TQ317.3  
Fund: National Key R&D Program of China(2021YFB4001605);Science and Technology Plan Project of State Administration for Market Regulation(2023MK123);"Open bidding for selecting the best candidates" Project of Fujian Province(2023H0054)
Corresponding Authors:  LI Jingfa, E-mail: lijingfa@bipt.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.229     OR     https://www.jcscp.org/EN/Y2025/V45/I2/319

Fig.1  Relationship between tensile yield stress and ambient temperature[8]
Fig.2  Relationship between tensile yield stress and nominal strain of tensile fracture with different tensile speeds[8]
Fig.3  Stress/strain curve of a thick HDPE tensile specimen exposed to 28 MPa high-pressure hydrogen environment[12]
Fig.4  Stress/strain curves of HDPE after 20 h exposure in air and 35 MPa hydrogen (a), and additional yield point data in air, 28 MPa hydrogen, 31 MPa hydrogen, and 35 MPa hydrogen environment (b)[12]
Fig.5  Creep compliance curves under different stresses[16]
Fig.6  Load-displacement curves of PE100 double-sided notched tensile specimen[9]
Fig.7  HYOCOMAT test stand[34]
1 Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
2 Zhang J X, Wang C L, Liu C W, et al. Research progress on hydrogen embrittlement behavior of pipeline steel in the environment of hydrogen-blended natural gas [J]. Surf. Technol., 2022, 51(10): 76
张家轩, 王财林, 刘翠伟 等. 掺氢天然气环境下管道钢氢脆行为研究进展 [J]. 表面技术, 2022, 51(10): 76
3 Wang X Y, Wu J X, Wang D Q, et al. Study on key mechanical indexes to assess the compatibility of pipeline steel with gaseous hydrogen [J]. Mech. Eng., 2023, 45: 286
王修云, 吴进贤, 王德强 等. 含氢气体环境中管线钢材料氢相容性评价的力学性能关键指标研究 [J]. 力学与实践, 2023, 45: 286
4 Zheng D K, Li J F, Liu B, et al. Molecular dynamics investigations into the hydrogen permeation mechanism of polyethylene pipeline material [J]. J. Mol. Liq., 2022, 368: 120773
5 Zuo X F. Study on creep rupture behavior of full-notch of polyethylene gas pipeline [D]. Changsha: Changsha University of Science & Technology, 2019
左晓锋. 聚乙烯燃气管道的全切口蠕变断裂行为研究 [D]. 长沙: 长沙理工大学, 2019
6 Lin D, Cen K, Pu C X, et al. Study on evaluation indicators of aging performance of gas polyethylene pipe in service [J]. Gas Heat, 2019, 39(5): A28
林 东, 岑 康, 蒲昌兴 等. 在役燃气聚乙烯管材老化性能评价指标研究 [J]. 煤气与热力, 2019, 39(5): A28
7 Guo S W, Wu H Z, Dong S H, et al. Simulation of hydrogen distribution in pipeline with double corrosion defects [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 335
郭诗雯, 吴浩志, 董绍华 等. 含双腐蚀缺陷管道的氢浓度分布模拟 [J]. 中国腐蚀与防护学报, 2024, 44: 335
doi: 10.11902/1005.4537.2023.333
8 Li Q L, Zhang X W, Pei X J, et al. Factors affecting tensile property of HDPE [J]. Refin. Chem. Ind., 2012, 23(1): 16
李清玲, 张晓文, 裴鑫杰 等. 高密度聚乙烯的拉伸性能影响因素分析 [J]. 炼油与化工, 2012, 23(1): 16
9 Castagnet S, Grandidier J C, Comyn M, et al. Mechanical testing of polymers in pressurized hydrogen: tension, creep and ductile fracture [J]. Exp. Mech., 2012, 52: 229
10 Castagnet S, Grandidier J C, Comyn M, et al. Effect of long-term hydrogen exposure on the mechanical properties of polymers used for pipes and tested in pressurized hydrogen [J]. Int. J. Press. Vessel. Pip., 2012, 89: 203
11 Klopffer M H, Berne P, Weber M, et al. New materials for hydrogen distribution networks: materials development & technico-economic benchmark [J]. Defect Diffus. Forum, 2012, 323-325: 407
12 Alvine K J, Kafentzis T A, Pitman S G, et al. An in situ tensile test apparatus for polymers in high pressure hydrogen [J]. Rev. Sci. Instrum., 2014, 85: 105110
13 Menon N C, Kruizenga A M, Alvine K J, et al. Behaviour of polymers in high pressure environments as applicable to the hydrogen infrastructure [A]. ASME 2016 Pressure Vessels and Piping Conference [C]. Vancouver, 2016: V06 BT 06A037
14 Davis L A, Pampillo C A. Kinetics of deformation of PTFE at high pressure [J]. J. Appl. Phys., 1972, 43: 4285
15 Menon N C, Nissen A, Mills B E, et al. Performance of select thermoplastics and elastomers in high-pressure hydrogen cycling environments [R]. Livermore: Sandia National Laboratories, 2020
16 Li M D, Li Y, Yang B, et al. Characterization and constitutive modelling of nonlinear creep of PE100 grade gas pipe material [J]. China Plast., 2021, 35(11): 91
doi: 10.19491/j.issn.1001-9278.2021.11.014
李茂东, 李 彦, 杨 波 等. PE100燃气管材的非线性蠕变行为及其本构模型研究 [J]. 中国塑料, 2021, 35(11): 91
doi: 10.19491/j.issn.1001-9278.2021.11.014
17 Lai J, Bakker A. Analysis of the non-linear creep of high-density polyethylene [J]. Polymer, 1995, 36: 93
18 Luo W B, Yang T Q, An Q L. Time-temperature-stress equivalence and its application to nonlinear viscoelastic materials [J]. Acta Mech. Solida Sin., 2001, 14: 195
19 Hamouda H B H, Simoes-betbeder M, Grillon F, et al. Creep damage mechanisms in polyethylene gas pipes [J]. Polymer, 2001, 42: 5425
20 Klopffer M H, Berne P, Espuche É. Development of innovating materials for distributing mixtures of hydrogen and natural gas. Study of the barrier properties and durability of polymer pipes [J]. Oil Gas Sci. Technol. Rev. IFP Energ. Nouv., 2015, 70: 305
21 Simmons K L, Fring L D, Kuang W B, et al. Gap analysis on the impacts of hydrogen addition to the north American natural gas infrastructure polyethylene pipelines [R]. Richland: Pacific Northwest National Laboratory, 2022
22 Krishnaswamy R K. Analysis of ductile and brittle failures from creep rupture testing of high-density polyethylene (HDPE) pipes [J]. Polymer, 2005, 46: 11664
23 Chan M K V, Williams J G. Plane strain fracture toughness testing of high density polyethylene [J]. Polym. Eng. Sci., 1981, 21: 1019
24 Guidara M A, Bouaziz M A, Schmitt C, et al. A semi-empirical model for structural integrity assessment of defected high density polyethylene pipes [J]. Eng. Fail. Anal., 2019, 100: 273
25 Graice I M, Younan M Y A, Naga S A R. Experimental investigation into the fracture toughness of polyethylene pipe material [J]. J. Pressure Vessel. Technol., 2005, 127: 70
26 Frank A, Pinter G, Lang R W. Prediction of the remaining lifetime of polyethylene pipes after up to 30 years in use [J]. Polym. Test., 2009, 28: 737
27 Hoàng E M, Lowe D. Lifetime prediction of a blue PE100 water pipe [J]. Polym. Degrad. Stabil., 2008, 93: 1496
28 International Organization for Standardization. Polyethylene (PE) materials for piping systems—determination of resistance to slow crack growth under cyclic loading—cracked round bar test method [S]. Geneva: ISO, 2015
29 Frank A, Berger I J, Arbeiter F, et al. Characterization of crack Initiation and slow crack growth resistance of PE 100 and PE 100-RC pipe grades with cyclic cracked round bar (CRB) tests [A]. Proceedings of the 17th Plastic Pipes Conference [C]. Chicago, 2014: 22
30 Redhead A, Frank A, Pinter G. Investigation of slow crack growth initiation in polyethylene pipe grades with accelerated cyclic tests [J]. Eng. Fract. Mech., 2013, 101: 2
31 Zhao Y J, Choi B H, Chudnovsky A. Characterization of the fatigue crack behavior of pipe grade polyethylene using circular notched specimens [J]. Int. J. Fatigue, 2013, 51: 26
32 Nezbedová E, Hutař P, Zouhar M, et al. The applicability of the Pennsylvania notch test for a new generation of PE pipe grades [J]. Polym. Test., 2013, 32: 106
33 Frank A, Pinter G. Evaluation of the applicability of the cracked round bar test as standardized PE-pipe ranking tool [J]. Polym. Test., 2014, 33: 161
34 Benoit G, Boyer S A E, Castagnet S, et al. Mechanical testing in pressurized hydrogen and carbon dioxide [A]. The 10th BSSM International Conference on Advances in Experimental Mechanics [C]. Edinburg, 2015
35 Byrne N, Ghanei S, Espinosa S M, et al. Influence of hydrogen on vintage polyethylene pipes: slow crack growth performance and material properties [J]. Int. J. Energy. Res., 2023, 2023: 6056999
[1] FAN Jiajun, DONG Lijin, MA Cheng, ZHANG Ziyu, MING Hongliang, WEI Boxin, PENG Qing, WANG Qinying. Research Progress on Hydrogen-assisted Fatigue Crack Growth of Pipeline Steels in Hydrogen-blended Natural Gas Environment[J]. 中国腐蚀与防护学报, 2025, 45(2): 296-306.
[2] DONG Zheng, MAO Yongqi, MENG Zhou, CHEN Xiangxiang, FU Chuanqing, LU Chentao. Passivation Behavior of Steel Bar Subjected to Tensile Stress in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2024, 44(6): 1547-1556.
[3] ZHAO Lianhong, WANG Yingqin, LIU Yuanhai, HE Weiping, WANG Haowei. Corrosion Behavior of Four Steels for Landing Gear of Amphibious Aircraft in Simulated Seawater[J]. 中国腐蚀与防护学报, 2024, 44(5): 1263-1273.
[4] GAO Junxuan, CAO Han, KUANG Wenjun, ZHENG Quan, ZHANG Peng, ZHONG Weihua. Research Progress on Irradiation Assisted Stress Corrosion Cracking Behavior and Mechanism of Austenitic Steel[J]. 中国腐蚀与防护学报, 2024, 44(4): 835-846.
[5] WENG Shuo, MENG Chao, ZHU Jiangfeng, WANG Ai, CHANG Xin, KANG Yun, HE Xiaotian, ZHAO Lihui. Effect of Fatigue Damage Under Stress-controlled Mode on the Corrosion Behavior of AA7075-T651 Al-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 1029-1037.
[6] HE Xun, WU Mengxue, YIN Li, ZHU Jin. Damage Evolution and Fatigue Life of Steel Wire with Double Corrosion Pits for Suspension Bridge under Wind- and Traffic-loads[J]. 中国腐蚀与防护学报, 2023, 43(6): 1358-1366.
[7] CHEN Zhenyu, ZHU Zhongliang, MA Chenhao, ZHANG Naiqiang, LIU Yutong. Effect of Different Loading Conditions on Corrosion Fatigue Crack Growth Rate of Nickel Base Alloy 617 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
[8] ZHOU Zhiping, WU Dakang, ZHANG Hongfu, ZHANG Lei, LI Mingxing, ZHANG Zhixin, ZHONG Xiankang. Tensile Property of L80 Steel in Air at 25-350 ℃ and Its Corrosion Behavior in Simulated Casing Service Conditions at 150-350 ℃[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[9] LIU Dong, LIU Jing, HUANG Feng, DU Liying. Corrosion Fatigue Crack Propagation Performance of DH36 Steel in Simulated Service Conditions for Offshore Engineering Structures[J]. 中国腐蚀与防护学报, 2022, 42(6): 959-965.
[10] WENG Shuo, YU Jun, ZHAO Lihui, FENG Jinzhi, ZHENG Songlin. Effect of Corrosion Damage on Fatigue Behavior of AA7075-T651 Al-alloy[J]. 中国腐蚀与防护学报, 2022, 42(3): 486-492.
[11] WANG Qishan, LI Hongjin, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Loading Modes on Initiation and Propagation of Corrosion Fatigue Cracks of X65 Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 227-234.
[12] WANG Yongxiang, HE Bolin, LI Li. Improvement of Corrosion Fatigue Performance of P355NL1 Steel Welded Joint by Ultrasonic Impact[J]. 中国腐蚀与防护学报, 2022, 42(1): 120-126.
[13] LIU Dong, LIU Jing, HUANG Feng, DU Liying, PENG Wenjie. Corrosion Fatigue Crack Growth Prediction Model Based on Stress Ratio and Threshold for Marine Engineering Steel DH36Z35 in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 163-168.
[14] ZHANG Ziyu, WU Xinqiang, HAN En-Hou, KE Wei. A Review on Corrosion Fatigue Crack Growth Behavior of Structural Materials in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
[15] SUN Xiaoguang, WANG Zihan, XU Xuexu, HAN Xiaohui, LI Gangqing, LIU Zhiyong. Effect of Industrial Atmospheric Environment on Corrosion Fatigue Behavior of Al-Mg-Si Alloy[J]. 中国腐蚀与防护学报, 2021, 41(4): 501-507.
No Suggested Reading articles found!