Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (6): 1617-1624    DOI: 10.11902/1005.4537.2023.383
Current Issue | Archive | Adv Search |
Lifetime Prediction Model for Barrier-type Corrosion-resistant Coating
YU Wenjuan1,2, WANG Tiancong3, ZHAO Dongyang4, XIANG Xueyun3, WU Hang3, WANG Wen4()
1. Shanghai Shipbuilding Technology Research Institute, Shanghai 200032, China
2. College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
3. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
4. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

YU Wenjuan, WANG Tiancong, ZHAO Dongyang, XIANG Xueyun, WU Hang, WANG Wen. Lifetime Prediction Model for Barrier-type Corrosion-resistant Coating. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1617-1624.

Download:  HTML  PDF(2128KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

For a barrier-type corrosion-resistant coating on Q235 carbon steel plate, the functional relationship of the cathodic delamination resistance versus the coating thickness and testing time may be acquired by means of cathodic delamination tests according to standards such as ISO 12944-6, ISO 11507 and ISO 9227 etc. The feasibility of using electrochemical impedance as an indicator for coating performance was analyzed and demonstrated. The variation of the electrochemical impedance of the coating during cyclic aging process was further assessed, and the numerical relationship of electrochemical impedance against the coating thickness and aging time was analyzed. Finally a lifetime prediction model for the coating was established. The results showed that the predicted lifetime shows a good comparability with the designed service lifetime of the barrier-type corrosion-resistant coating.

Key words:  barrier corrosion-resistant coating      electrochemical impedance      cathodic delamination      cyclic aging      lifetime prediction     
Received:  05 December 2023      32134.14.1005.4537.2023.383
ZTFLH:  TG174  
Fund: Ministry of Industry and Information Technology of China(MC-202003-Z01-02)
Corresponding Authors:  WANG Wen, E-mail: wen@imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.383     OR     https://www.jcscp.org/EN/Y2024/V44/I6/1617

Fig.1  EIS measurement position for cathodic disbonding samples
Fig.2  Surface fitting of delamination distance as a function of coating thickness and test cycle
Fig.3  Calculated delamination distance vs. coating thickness after 9 testing cycles

Coating thickness

μm

Testing cycle

Delamination distance

mm

Impedance

1010 Ω·cm2

260-28011.18.81
35.96.91
57.96.14
78.23.10
98.51.52
300-32011.817.79
33.89.80
56.37.03
795.28
994.31
350-3701125.73
34.113.17
56.58.58
78.27.25
97.16.44
Table 1  Delamination distance and the corresponding impedance of the coatings
ImpedanceDelamination distance
ImpedancePearson coefficient1-0.81
p value/0.0002
Delamination distancePearson coefficient-0.811
p value0.0002/
Table 2  Pearson correlation of the coating impedance and delamination distance
Fig.4  Adhesion of the coatings vs. cathodic delamination testing cycles

Exposure time

h

Coating thickness

μm

Coating impedance

1010 Ω·cm2

lnZ
025713.0025.60
16827612.6325.56
6722346.2024.85
11762476.5324.90
13442234.3824.50
15122555.9324.81
16802858.3625.15
18482645.1324.66
20162363.7324.34
21842524.7924.59
25202765.7224.77
26882232.5123.95
Table 3  Exposure time, thickness and impedance of the coatings
Fig.5  Surface fitting of lnZ as a function of coating thickness and exposure time
Fig.6  Calculated ln|Z| vs. exposure time for the coating with the thickness of 200 μm
Prime/topcoat

Dry film thickness

μm

Design service life

a

Predicted service life

a

Jotaprime 510 / Hardtop XP1 × 100 + 2 × 50 or 1 × 125 + 2 × 506-108.1-9.3
1 × 150 + 2 × 50 or 1 × 175 + 2 × 5010-1211.1-12.9
1 × 200 + 2 × 50 or 2 × 100 + 2 × 5012-1516.9
Table 4  Comparison between predicted service life and design service life for coatings
1 Zhang M, Xu H Y, Zeze A L P, et al. Coating performance, durability and anti-corrosion mechanism of organic modified geopolymer composite for marine concrete protection [J]. Cem. Concr. Compos., 2022, 129: 104495
2 Lyon S B, Bingham R, Mills D J. Advances in corrosion protection by organic coatings: what we know and what we would like to know [J]. Prog. Org. Coat., 2017, 102: 2
3 Aljibori H S, Alamiery A, Kadhum A A H. Advances in corrosion protection coatings: a comprehensive review [J]. Int. J. Corros. Scale Inhib., 2023, 12: 1476
4 Knudsen O Ø, Skilbred A W B, Løken A, et al. Correlations between standard accelerated tests for protective organic coatings and field performance [J]. Mater. Today Commun., 2022, 31: 103729
5 Li S, Bi H C, Weinell C E, et al. A quantitative real-time evaluation of rust creep propagation in coating systems exposed to field testing and cyclic ageing test [J]. Prog. Org. Coat., 2023, 184: 107866
6 Pélissier K, Le Bozec N, Thierry D, et al. Evaluation of the long-term performance of marine and offshore coatings system exposed on a traditional stationary site and an operating ship and its correlation to accelerated test [J]. Coatings, 2022, 12: 1758
7 Martinez S, Šoić I, Golub V, et al. Comparative electrochemical impedance spectroscopy quantification of coating weathering, long-term Immersion, and salt spray test outcomes [J]. Corrosion, 2023, 79: 1029
8 LeBozec N, Thierry D, Le Calvé P, et al. Performance of marine and offshore paint systems: correlation of accelerated corrosion tests and field exposure on operating ships [J]. Mater. Corros., 2015, 66: 215
9 Appleman B R. Survey of accelerated test methods for anti-corrosive coating performance [J]. J. Coat. Technol., 1990, 67: 57
10 Zapponi M, Pérez T, Ramos C, et al. Prohesion and outdoors tests on corrosion products developed over painted galvanized steel sheets with and without Cr(VI) species [J]. Corros. Sci., 2005, 47: 923
11 Guseva O, Brunner S, Richner P. Service life prediction for aircraft coatings [J]. Polym. Degrad. Stab., 2003, 82: 1
12 Martin J W, Nguyen T, Byrd E, et al. Relating laboratory and outdoor exposures of acrylic melamine coatings: I. Cumulative damage model and laboratory exposure apparatus [J]. Polym. Degrad. Stab., 2002, 75: 193
13 Jacques L F E. Accelerated and outdoor/natural exposure testing of coatings[J]. Prog. Polym. Sci., 2000, 25: 1337
14 Kunce I, Królikowska A, Komorowski L. Accelerated corrosion tests in quality labels for powder coatings on galvanized steel—comparison of requirements and experimental evaluation [J]. Materials, 2021, 14: 6547
15 López -Ortega A, Bayón R, Arana J L. Evaluation of protective coatings for high-corrosivity category atmospheres in offshore applications [J]. Materials, 2019, 12: 1325
16 LeBozec N, Thierry D, Pelissier K. A new accelerated corrosion test for marine paint systems used for ship’s topsides and superstructures [J]. Mater. Corros., 2018, 69: 447
17 Shreepathi S, Guin A K, Naik S M, et al. Service life prediction of organic coatings: electrochemical impedance spectroscopy vs actual service life [J]. J. Coat. Technol. Res., 2011, 8: 191
18 Zhang S Y, Zhai Q Q, Li Y Q. Degradation modeling and RUL prediction with Wiener process considering measurable and unobservable external impacts [J]. Reliab. Eng. Syst. Saf., 2023, 231: 109021
19 Bierwagen G, Tallman D, Li J P, et al. EIS studies of coated metals in accelerated exposure [J]. Prog. Org. Coat., 2003, 46: 149
20 Hinderliter B R, Croll S G, Tallman D E, et al. Interpretation of EIS data from accelerated exposure of coated metals based on modeling of coating physical properties [J]. Electrochim. Acta, 2006, 51: 4505
21 Gao J, Li C, Feng H X, et al. In situ and dynamic observation of coating failure behavior [J]. Prog. Org. Coat. 2020, 138: 105387
22 Gao J, Hu W, Wang R, et al. Study on a multifactor coupling accelerated test method for anticorrosive coatings in marine atmospheric environments [J]. Polym. Test., 2021, 100: 107259
23 Zhang Z H, Wu J, Zhao X, et al. Life evaluation of organic coatings on hydraulic metal structures [J]. Prog. Org. Coat., 2020, 148: 105848
24 Ji H D, Ma X B, Cai Y K, et al. Degradation modeling and lifetime evaluation for organic anti-corrosion coatings using a three-stage electrochemical statistical model [J]. J. Polym. Environ., 2024, 32: 1046, doi: 10.1007/s10924-023-03015-5
25 LeBozec N, Carter J, Scholz T, et al. Round-robin evaluation of ISO 20340 annex a test method [A]. Proceedings of the CORROSION 2016 [C]. Vancouver, Canada, 2016: 6991
26 Wang T C, Zhao D Y, Xiang X Y, et al. Degradation behavior of an epoxy corrosion-resistant coating in NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1361
(王天丛, 赵东杨, 向雪云 等. 一种环氧耐蚀涂层在NaCl溶液中的劣化行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1361)
doi: 10.11902/1005.4537.2023.375
27 Leidheiser H. Cathodic delamination of polybutadiene from steel-a review [J]. J. Adhes. Sci. Technol., 1987, 1: 79
28 Skar J I, Steinsmo U. Cathodic disbonding of paint films-transport of charge [J]. Corros. Sci., 1993, 35: 1385
29 Harun M K, Marsh J, Lyon S B. The effect of surface modification on the cathodic disbondment rate of epoxy and alkyd coatings [J]. Prog. Org. Coat., 2005, 54: 317
30 Touhsaent R E, Leidheiser H. A capacitance-resistance study of polybutadiene coatings on steel [J]. Corrosion, 1972, 28: 435
31 González S, Gil M A, Hernández J O, et al. Resistance to corrosion of galvanized steel covered with an epoxy-polyamide primer coating [J]. Prog. Org. Coat., 2001, 41: 167
32 Gray L G S, Appleman B R. EIS: electrochemical impedance spectroscopy [J]. J. Prot. Coat. Linings, 2003, 20: 66
33 Scully J R, Hensley S T. Lifetime prediction for organic coatings on steel and a magnesium alloy using electrochemical impedance methods [J]. Corrosion, 1994, 50: 705
34 Bauer D R. Interpreting weathering acceleration factors for automotive coatings using exposure models [J]. Polym. Degrad. Stab., 2000, 69: 307
35 Chong S L. A comparison of accelerated tests for steel bridge coatings in marine environments [J]. J. Prot. Coat. Linings, 1997, 14: 20
[1] WANG Tiancong, ZHAO Dongyang, XIANG Xueyun, WU Hang, WANG Wen. Degradation Behavior of an Epoxy Corrosion-resistant Coating in NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(5): 1361-1369.
[2] LIU Zhe, DENG Chengman, WEI Junsheng, XIA Da-Hai. Fast Evaluation of Resistance to High Temperature Steam Sterilization Process for Organic Coating Coated Tinplate by Electrochemical Method[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
[3] FU Jiangyue, GUO Jianxi, YANG Yange, LENG Zhe, WANG Wen. Erosion-corrosion Behavior of a High Strength Low Alloy Steel in Flowing 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[4] LI Zhuoxuan, CAO Yanhui, LI Chongjie, LI Hui, ZHANG Xiaoming, YONG Xingyue. Relationship Between Corrosion Failure Degree of Organic Coatings and Mechanical Properties for Dissimilar Metal Assamblies[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[5] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[6] LI Chunlin, SHI Hongwei, LIANG Guoping, LI Li, WANG Hao, WANG Wei, LIU Fuchun, HAN En-Hou. Corrosion Resistance and Aging Mechanism of Polyurethane Topcoat for High-speed Train[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[7] CHEN Xiaohan, BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang. Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[8] HU Jiezhen, SHANGGUAN Juyu, DENG Peichang, FENG Qilan, WANG Gui, WANG Peilin. Effect of Barnacle Adhesion on Corrosion Behavior of Q235 Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[9] LIU Ming, WANG Jie, ZHU Chunhui, ZHANG Yanxiao. Electrochemical Corrosion Behavior of 3D-printed NiTi Shape Memory Alloy in a Simulated Oral Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[10] DENG Chengman, LIU Zhe, XIA Da-Hai, HU Wenbin. Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[11] WANG Tong, WANG Wei. Distribution of Relaxation Time of Polydimethylsiloxane Coatings During Self-healing Process[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[12] YUAN Shicheng, WU Yanfeng, XU Changhui, WANG Xingqi, LENG Zhe, YANG Yange. Influence of Polyhydroxy Hyperdispersant on Anti-corrosion Property of Waterborne Epoxy Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[13] MAO Yingchang, ZHU Yu, SUN Shengkai, QIN Zhenbo, XIA Da-Hai, HU Wenbin. Localized Corrosion of 5083 Al-alloy in Simulated Marine Splash Zone[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[14] WEN Jiayuan, SONG Guihong, WEI Xiaoyuan, ZHAO Xin, WU Yusheng, DU Hao, HE Chunlin. Influence of Cr Content on Corrosion Resistance of Composite Ni/Ni-Cr/Ni-Cr-Al-Si Films on Cu[J]. 中国腐蚀与防护学报, 2022, 42(4): 638-646.
[15] LIANG Taihe, ZHU Xuemei, ZHANG Zhenwei, WANG Xinjian, ZHANG Yansheng. Corrosion Performance of Transition Layer at Interface of Oxide Scale/substrate Formed on Austenitic Steel Fe32Mn7Cr3Al2Si During High Temperature Oxidation[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
No Suggested Reading articles found!