|
|
Anodic Polarization Characteristics of Rebar Steel HRB400 in Simulated Concrete Pore Fluid |
SHANG Baihui1, MA Yuantai2, MENG Meijiang2, LI Ying2( ), LOU Ming3, BAI Jing1 |
1.Liaoning Provincial Engineering Research Center for High Value Utilization of Magnesite, School of Materials Science and Technology, Yingkou Institute of Technology, Yingkou 115014, China 2.Corrosion and Protection Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.Yingkou Special Automobile Bearing Company, Yingkou 115004, China |
|
Cite this article:
SHANG Baihui, MA Yuantai, MENG Meijiang, LI Ying, LOU Ming, BAI Jing. Anodic Polarization Characteristics of Rebar Steel HRB400 in Simulated Concrete Pore Fluid. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 422-428.
|
Abstract In order to acquire the critical chloride ion concentration for the break-down of passivation film in the initial carbonization environment of concrete. According to the basic principle of electrochemical reaction, the anodic polarization characteristics of rebar steel HRB400 in a simulated initial carbonized concrete solution were studied by means of open-circuit potential- and anode polarization curve-measurement. Results showed that there was a linear relationship between the breakdown potential and the chloride ion concentration in logarithmic plots, and the rationality of passivation potential and tranpassivation potential as the key parameters of the breakdown potential was analyzed. Based on this, the upper limit [Cl-]u and lower limit [Cl-]l of critical chloride ion concentration for rebar steel HRB400 are obtained. Accordingly, the relationship between pH value and chloride concentration of pitting corrosion sensitivity of the rebar steel was drawn. The service status of rebar steel HRB400 in the pH range of 12.5-11.0 is evaluated, and the expressions of the upper limit [Cl-]u and lower limit [Cl-]l of the critical chloride ion concentration and pH value are given.
|
Received: 26 April 2023
32134.14.1005.4537.2023.124
|
|
Fund: High-level Talents Research Project of Yingkou Institute of Technology(YJRC202018);Liaoning Provincial Education Department Scientific Research Project (Youth Project)(LJKQZ2021182) |
Corresponding Authors:
LI Ying, E-mail: liying@imr.ac.cn
|
1 |
Hou B R. The Cost of Corrosion in China[M]. Beijing: Science Press, 2017: 25
|
|
侯宝荣. 中国腐蚀成本[M]. 北京: 科学出版社, 2017: 25
|
2 |
Liu J, Geng Y J, Li S C, et al. Protection efficacy of TEOS/IBTS coating on microbial fouling of concrete in marine tidal areas[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 135
|
|
刘 珺, 耿永娟, 李绍纯 等. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42: 135
|
3 |
Wei J, Wang C G, Wei X, et al. Corrosion evolution of steel reinforced concrete under simulated tidal and immersion zones of marine environment[J]. Acta Metall. Sin. Engl. Lett., 2019, 32: 900
|
4 |
Tang S Y, Liu J, Chen H D, et al. Analysis on calculation model for shear capacity of rust-stirrup reinforced concrete beams strengthened with fiber reinforced polymer[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 861
|
|
唐仕盈, 刘 杰, 陈浩东 等. 纤维增强复合材料加固锈蚀箍筋混凝土梁的抗剪承载力计算模型分析[J]. 中国腐蚀与防护学报, 2022, 42: 861
doi: 10.11902/1005.4537.2021.274
|
5 |
An Y Q, Wang X, Cui Z Y. Effect of nitric acid passivation on critical Cl- concentration for corrosion of 304 stainless steel in simulated concrete pore solution[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 804
|
|
安易强, 王 昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41: 804
doi: 10.11902/1005.4537.2020.232
|
6 |
Guo R Q, Guo Z W, Shi Y Y. Review on research of critical chloride concentration in initial corrosion time of steel bar[J]. Bull. Chin. Ceram. Soc., 2020, 39: 2706
|
|
郭瑞琦, 郭增伟, 施跃毅. 钢筋初始锈蚀时刻的Cl-临界浓度研究综述[J]. 硅酸盐通报, 2020, 39: 2706
|
7 |
Yu X, Al-Saadi S, Zhao X L, et al. Electrochemical investigations of steels in seawater sea sand concrete environments[J]. Materials (Basel), 2021, 14: 5713
doi: 10.3390/ma14195713
|
8 |
Liu X M, Shi Z M, Lin H C, et al. Electrochemical corrosion behavior of rebar in simulated pore solution[J]. Corros. Sci. Prot. Technol., 1997, 9(2): 56
|
|
刘晓敏, 史志明, 林海潮 等. 钢筋在混凝土模拟孔隙液中腐蚀电化学行为[J]. 腐蚀科学与防护技术, 1997, 9(2): 56
|
9 |
Zhang F, Pan J S, Lin C J. Localized corrosion behaviour of reinforcement steel in simulated concrete pore solution[J]. Corros. Sci., 2009, 51: 2130
doi: 10.1016/j.corsci.2009.05.044
|
10 |
Ai Z Y, Jiang J Y, Sun W, et al. Passive behaviour of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions with different pH[J]. Appl. Surf. Sci., 2016, 389: 1126
doi: 10.1016/j.apsusc.2016.07.142
|
11 |
Roberge P R. Handbook of Corrosion Engineering[M]. New York: McGRaw-Hill, 2012
|
12 |
Liu X H, MacDonald D D, Wang M, et al. Effect of dissolved oxygen, temperature, and pH on polarization behavior of carbon steel in simulated concrete pore solution[J]. Electrochim. Acta, 2021, 366: 137437
doi: 10.1016/j.electacta.2020.137437
|
13 |
Cao C N. Principles of Electrochemistry of Corrosion[M]. 3rd ed. Beijing: Chemical Industrial Press, 2008
|
|
曹楚南. 腐蚀电化学原理[M]. 3版. 北京: 化学工业出版社, 2008
|
14 |
Yuan X W, Wang X, Yang H Y. Effects of pH and Cl- content on degradation process of pre-passivated stainless steels in an alkaline solution[J]. J. Electrochem. Soc., 2022, 169: 031506
|
15 |
Adewumi A A, Maslehuddin M, Al-Dulaijan S U, et al. Corrosion behaviour of carbon steel and corrosion resistant steel under elevated temperature and chloride concentration in simulated concrete pore solution[J]. Eur. J. Environ. Civil Eng., 2021, 25: 452
doi: 10.1080/19648189.2018.1531270
|
16 |
Tan Y T, Wijesinghe S L, Blackwood D J. The inhibitive effect of bicarbonate and carbonate ions on carbon steel in simulated concrete pore solution[J]. Corros. Sci., 2014, 88: 152
doi: 10.1016/j.corsci.2014.07.026
|
17 |
Duffó G S, Farina S B. Electrochemical behaviour of steel in mortar and in simulated pore solutions: Analogies and differences[J]. Cem. Concr. Res., 2016, 88: 211
doi: 10.1016/j.cemconres.2016.07.007
|
18 |
Zhang J C, Jiang J Y, Li Y, et al. Passive films formed on seawater corrosion resistant rebar 00Cr10MoV in simulated concrete pore solutions[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 442
|
|
张建春, 蒋金洋, 李 阳 等. 耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究[J]. 中国腐蚀与防护学报, 2016, 36: 442
|
19 |
Jin W L, Yue Z G, Xu C, et al. Accelerated simultaneous determination of chloride depassivation threshold of rebar in concrete[J]. J. Chin. Soc. Corros. Prot., 2012, 32: 223
|
|
金伟良, 岳增国, 许 晨 等. 混凝土中钢筋脱钝Cl-阈值的快速测定[J]. 中国腐蚀与防护学报, 2012, 32: 223
|
20 |
Lin B. Electrochemical comparative study of Q235 steel and 304 SS in simulated concrete pore solutions and the effect of chloride ions on their corrosion behavior[J]. Int. J. Electrochem. Sci., 2019, 14: 3081
doi: 10.20964/2019.02.65
|
21 |
Luo H, Wang X Z, Dong C F, et al. Effect of cold deformation on the corrosion behaviour of UNS S31803 duplex stainless steel in simulated concrete pore solution[J]. Corros. Sci., 2017, 124: 178
doi: 10.1016/j.corsci.2017.05.021
|
22 |
Liu M, Cheng X Q, LI X G, et al. Corrosion behavior of low-Cr steel rebars in alkaline solutions with different pH in the presence of chlorides[J]. J. Electroanal. Chem., 2017, 803: 40
doi: 10.1016/j.jelechem.2017.09.016
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|