Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (1): 59-70    DOI: 10.11902/1005.4537.2023.063
Current Issue | Archive | Adv Search |
Inhibition of Q235 Steel in 1 mol/L HCl Solution by a New Efficient Imidazolium Schiff Base Corrosion Inhibitor
WANG Pengjie1,2, SONG Yuhao1,2, FAN Lin1,2, DENG Kuanhai2, LI Zhonghui3, MEI Zongbin4, GUO Lei5, LIN Yuanhua1,2,3()
1.State Key Laboratory of Oil and Gas Reservoir Geology and Development Engineering, Southwest Petroleum University, Chengdu 610500, China
2.School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
3.School of Petroleum Engineering, Changjiang University, Wuhan 434023, China
4.Sichuan Huayu Drilling and Production Equipment Co., Ltd., Luzhou 646000, China
5.Materials and Chemical Engineering, Tongren University, Tongren 554300, China
Cite this article: 

WANG Pengjie, SONG Yuhao, FAN Lin, DENG Kuanhai, LI Zhonghui, MEI Zongbin, GUO Lei, LIN Yuanhua. Inhibition of Q235 Steel in 1 mol/L HCl Solution by a New Efficient Imidazolium Schiff Base Corrosion Inhibitor. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 59-70.

Download:  HTML  PDF(9316KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

An imidazole Schiff base (MIX) corrosion inhibitor was synthesized via processes of amidation, dehydration cyclization, and quaternization at different temperatures with oleic acid, diethylenetriamine, n-butane iodide and cinnamaldehyde as raw material. The corrosion inhibition performance and mechanism of MIX on Q235 steel in 1.00 mol/L HCl were systematically investigated by means of mass loss measurement, electrochemical testing, and surface analysis methods, as well as theoretical simulations. The results showed that the corrosion inhibition efficiency determined by mass loss method, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization (Tafel) were 98.64%, 96.93%, and 99.15%, respectively for adding a dose of MIX 2 mmol/L in the 2.00 mmol/L HCl solution, indicating that MIX can exhibit excellent corrosion inhibition performance in HCl environments. Electrochemical testing and isothermal adsorption models indicate that MIX is a cathodic corrosion inhibitor that can spontaneously adsorb on the surface of Q235 steel, following the Langmuir adsorption isotherm model. MIX can form a stable protective film on the surface of Q235 steel, further hindering the charge transfer rate within the corrosion system. XPS, EDS and FT-IR analysis confirmed that MIX molecules may be adsorbed on the surface of Q235 steel. Density functional theory (DFT) showed that the active site of MIX was phenyl, and the N atom on the imidazole ring. Molecular dynamics (MD) further confirmed that MIX may be adsorbed on the surface of Q235 steel. MIX can exhibit excellent corrosion inhibition performance in HCl environments, mainly due to the formation of a stable protective film on the surface of Q235 steel, which reduces the charge transfer rate within the corrosion system.

Key words:  imidazole Schiff base      electrochemistry      mass loss experiment      corrosion inhibition performance      theoretical calculation     
Received:  10 March 2023      32134.14.1005.4537.2023.063
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52074232);Sichuan Science and Technology Program(2022NSFSC0028);China Postdoctoral Science Foundation(2022M710117);Sichuan Youth Science Foundation(2022NSFSC0994)
Corresponding Authors:  LIN Yuanhua, E-mail: yhlin28@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.063     OR     https://www.jcscp.org/EN/Y2024/V44/I1/59

Fig.1  Synthesis route of MIX corrosion inhibitor molecule
Fig.2  FTIR spectrum of MIX
Fig.3  NMR spectra of MIX in heavy water: (a) 1H-NMR, (b) 13C-NMR
Fig.4  OCP of Q235 steel in MIX solutions with different concentrations
Fig.5  Nyquist (a), impedance module (b) and phase angle (c) plots of Q235 steel in MIX solutions with different concentrations and its equivalent circuit (d)

C

mmol/L

Rs

Ω·cm2

Y0, f× 10-5

Ω-1·cm-2·sn

nf

Cf

μF·cm2

Rf

Ω·cm2

Y0, rct× 10-5

Ω-1·cm-2·sn

nrct

Cdl

μF·cm2

Rct

Ω·cm2

χ2ηp
0.008.592.450.9910.371.4812.460.8133.3217.140.0015/
0.201.104.9150.809.4773.311.210.8021.52267.80.004792.04%
0.501.4115.260.797.87411.13.660.7418.7276.840.005194.44%
1.002.718.780.765.6183.8517.910.7011.91696.30.003896.52%
2.002.4619.450.723.67790.38.440.718.3295.370.005696.93%
Table 1  EIS parameters of Q235 steel in different MIX corrosion inhibition solutions
Fig.6  Potentiodynamic polarization diagram of Q235 steel in different MIX corrosion inhibition solutions
Concentration / mmol·L-1Ecorr / VIcorr / mA·cm-2

-bc

mV·dec-1

ba

mV·dec-1

η
0.00-0.4783.5410143.76150.26/
0.20-0.4930.0827147.95158.0597.66%
0.50-0.4840.0525179.17157.7798.51%
1.00-0.4890.0332201.65145.5399.06%
2.00-0.4930.0301255.68161.2999.15%
Table 2  Polarization curve parameters and corrosion inhibition efficiency
MIX, 25oC / mmol·L-1CR / mg·cm-2·h-1η
0.0014.20 ± 0.0011/
0.200.97 ± 0.000693.70%
0.500.63 ± 0.000995.91%
1.000.35 ± 0.000597.73%
2.000.21 ± 0.000998.64%
Table 3  Mass loss parameters of Q235 steel in different MIX corrosion inhibition solutions
Fig.7  Langmuir (a), El-Awady (b), Flory-Huggins (c), Freundlich (d) and Temkin (e) adsorption isotherm
Fig.8  Surface morphologies of Q235 steel after mass loss in MIX corrosion inhibition solutions with a concentration of 0.00 (a), 0.20 (b), 0.50 (c), 1.00 (d) and 2.00 (e) mmol/L
Fig. 9  Surface morphology (a) and EDS spectrum (b) of Q235 steel after mass loss
Fig.10  FTIR spectra of Q235 steel surface and MIX after mass loss
Fig.11  XPS spectra of Q235 steel surface after mass loss: (a) XPS survey, (b) Fe 2p3/2, (c) C 1s, (d) N 1s, (e) O 1s
Fig.12  Molecular structure (a), HOMO (b), LUMO (c) and ESP (d) of MIX molecule
Fig.13  Optimal adsorption morphology of MIX on Fe (110): (a) side view, (b) top view
1 Liu Q Y, Song Z J, Han H, et al. A novel green reinforcement corrosion inhibitor extracted from waste Platanus acerifolia leaves [J]. Constr. Build. Mater., 2020, 260: 119695
doi: 10.1016/j.conbuildmat.2020.119695
2 Liu D M, Yang K, Shi X, et al. Synergistic inhibition effect between 2-mercaptobenzothiazole and chloride ion in sulfuric acid solution [J]. Surf. Technol., 2021, 50(7): 351
刘冬梅, 杨 康, 石 鑫 等. 硫酸溶液中2-巯基苯并噻唑与氯离子的协同缓蚀作用 [J]. 表面技术, 2021, 50(7): 351
3 Ni X L, Li H, Li Y F, et al. Corrosion protection of imidazoline corrosion inhibitors with different carbon chain lengths in CO2 driving oil environment [J]. Surf. Technol., 2023, 52(8): 278
倪小龙, 李 欢, 李云飞 等. 不同碳链长度咪唑啉缓蚀剂在CO2驱采油环境中的腐蚀防护作用 [J]. 表面技术, 2023, 52(8): 278
4 Ren X D, Wang H, Wei Q, et al. Electrochemical behaviour of N80 steel in CO2 environment at high temperature and pressure conditions [J]. Corros. Sci., 2021, 189: 109619
doi: 10.1016/j.corsci.2021.109619
5 Liu M M, Yang X B, Chen X Q, et al. Research progress on corrosion behavior of metallic materials in acetic acid environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 13
刘明明, 杨小兵, 陈晓琪 等. 醋酸环境下金属材料腐蚀行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 13
doi: 10.11902/1005.4537.2022.186
6 Pan C G, Chen N, He J Z, et al. Effects of corrosion inhibitor and functional components on the electrochemical and mechanical properties of concrete subject to chloride environment [J]. Construct. Build. Mater., 2020, 260: 119724
doi: 10.1016/j.conbuildmat.2020.119724
7 Katiyar P K, Behera P K, Misra S, et al. Comparative corrosion behavior of five different microstructures of rebar steels in simulated concrete pore solution with and without chloride addition [J]. J. Mater. Eng. Perform., 2019, 28: 6275
doi: 10.1007/s11665-019-04339-x
8 Rangaswamy V M, Keshavayya J. Anticorrosive ability of cycloheximide on mild steel corrosion in 0.5M H2SO4 Solution [J]. Chem. Data Collect., 2022, 37: 100795
doi: 10.1016/j.cdc.2021.100795
9 Firdhouse M J, Nalini D. Corrosion inhibition of mild steel in acidic media by 5′-Phenyl-2′,4′-dihydrospiro [indole-3,3′-pyrazol]-2(1H)-one [J]. J. Chem., 2013, 2013: 835365
10 Saady A, Rais Z, Benhiba F, et al. Chemical, electrochemical, quantum, and surface analysis evaluation on the inhibition performance of novel imidazo [4,5-b] pyridine derivatives against mild steel corrosion [J]. Corros. Sci., 2021, 189: 109621
doi: 10.1016/j.corsci.2021.109621
11 Li R H, Wang Z X, Xu Q W, et al. Synthesis, characterization and physicochemical properties of new chiral quinuclidinol quaternary ammonium salts [J]. J. Mol. Struct., 2020, 1209: 127918
doi: 10.1016/j.molstruc.2020.127918
12 Qiang Y J, Zhang S T, Yan S, et al. Three indazole derivatives as corrosion inhibitors of copper in a neutral chloride solution [J]. Corros. Sci., 2017, 126: 295
doi: 10.1016/j.corsci.2017.07.012
13 Yang X Y, Yang Y T, Lu X P, et al. Research progress of corrosion inhibitor for Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 435
杨欣宇, 杨云天, 卢小鹏 等. 镁合金缓蚀剂研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 435
doi: 10.11902/1005.4537.2021.295
14 Zhang M, Li Q, Zhang K, et al. Corrosion inhibition properties of propylenediamine-type double mannich base acidizing corrosion inhibitor [J]. Corros. Prot., 2022, 43(6): 26
张 萌, 李 清, 张鲲 等. 丙二胺型双曼尼希碱酸化缓蚀剂的缓蚀性能 [J]. 腐蚀与防护, 2022, 43(6): 26
15 Guo N N, Wang X R, Gu Y Z, et al. Research on synthesis and application of quaternary ammonium salt amphoteric Gemini surfactants [J]. Petrochem. Technol., 2021, 50: 608
郭乃妮, 王小荣, 古元梓 等. 季铵盐型两性双子表面活性剂的合成及应用研究进展 [J]. 石油化工, 2021, 50: 608
doi: 10.3969/j.issn.1000-8144.2021.06.017
16 Li J Y, Zhao J Q, Shao H Y, et al. Synthesis of thiourido-imidazoline corrosion inhibitor and its corrosion inhibition performance [J]. Oilfield Chem., 2021, 38: 152
李继勇, 赵俊桥, 邵红云 等. 硫脲基咪唑啉缓蚀剂的合成及其缓蚀性能 [J]. 油田化学, 2021, 38: 152
17 Cheng Y S, Xu H W, Huang C S, et al. Study on corrosion inhibition performance of water-soluble imidazoline amide on A3 steel [J]. Appl. Chem. Ind., 2023, 52: 779
程玉山, 徐会武, 黄长山 等. 水溶性咪唑啉酰胺对A3钢的缓蚀性能研究 [J]. 应用化工, 2023, 52: 779
18 Yang Q Z, Zhang T L, Liu C S, et al. Preparation and inhibition mechanism of gemini imidazoline quaternary ammonium salt inhibitor [J]. Chem. Ind. Eng. Progress, 2023: 1-13, doi: 10.16085/j.issn.1000-6613.2022-2169
阳清正, 张太亮, 刘从胜 等. 双子型咪唑啉季铵盐缓蚀剂的制备及缓蚀机理 [J]. 化工进展, 2023: 1-13, doi: 10.16085/j.issn.1000-6613.2022-2169
19 Lu Y, Zhang G X, Liu B S, et al. The corrosion inhibition effect of proparynol-modified midazolin on X65 steel in CO2/H2S co-existence system [J]. Surf. Technol., 2021, 50(7): 345
陆 原, 张国欣, 刘保山 等. 丙炔醇改性硫脲基咪唑啉在CO2/H2S共存体系中对X65钢的腐蚀抑制作用 [J]. 表面技术, 2021, 50(7): 345
20 Li J L, Shen Y B, Li J Y, et al. Study on the inhibitor of schiff base pyridine quaternary ammonium salt for anti-high temperature and high concentration hydrochloric acid [J]. Surf. Technol., 2021, 50(9): 303
李俊莉, 沈燕宾, 李霁阳 等. 抗高温高浓盐酸席夫碱基吡啶季铵盐缓蚀剂的研究 [J]. 表面技术, 2021, 50(9): 303
21 Limco R A, Bacosa H P, Lubguban A A, et al. Morinda citrifolia (Noni) leaf extract as corrosion inhibitor for steel-reinforced concrete in saline environment [J]. Int. J. Environ. Sci. Technol., 2020, 17: 4531
doi: 10.1007/s13762-020-02795-w
22 Cao F T, Wei J, Dong J H, et al. Corrosion inhibition behavior of 1-hydroxyethylidene-1,1-diphosphonic acid on 20SiMn steel in simulated concrete pore solution containing Cl- [J]. Acta Metall. Sin., 2020, 56: 898
曹凤婷, 魏 洁, 董俊华 等. 羟基亚乙基二膦酸对20SiMn钢在含Cl-混凝土模拟孔隙液中的缓蚀行为 [J]. 金属学报, 2020, 56: 898
doi: 10.11900/0412.1961.2019.00382
23 Cao S Y, Liu D, Ding H, et al. Corrosion inhibition effects of a novel ionic liquid with and without potassium iodide for carbon steel in 0.5 M HCl solution: An experimental study and theoretical calculation [J]. J. Mol. Liquids, 2019, 275: 729
doi: 10.1016/j.molliq.2018.11.115
24 Wu H, Deng S D, Li X H. Synergistic inhibition effect of cuscuta chinensis lam extract and potassium iodide on cold rolled steel in hydrochloric acid [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 77
吴 浩, 邓书端, 李向红. 菟丝子提取物与碘化钾对冷轧钢在盐酸中的缓蚀协同效应 [J]. 中国腐蚀与防护学报, 2023, 43: 77
25 Verma C, Quraishi M A, Ebenso E E, et al. 3-Amino alkylated indoles as corrosion inhibitors for mild steel in 1M HCl: Experimental and theoretical studies [J]. J. Mol. Liquids, 2016, 219: 647
doi: 10.1016/j.molliq.2016.04.024
26 De A, Santra S, Kovalev I S, et al. Synthesis of 2-imidazolines by co-grinding of N-tosylaziridines and nitriles [J]. Mendeleev Commun., 2020, 30: 188
doi: 10.1016/j.mencom.2020.03.019
27 Hashem M A, Elnagar M M, Kenawy I M, et al. Synthesis and application of hydrazono-imidazoline modified cellulose for selective separation of precious metals from geological samples [J]. Carbohydr. Polym., 2020, 237: 116177
doi: 10.1016/j.carbpol.2020.116177
28 Hameed R S A, Al-Bagawi A H, Shehata H A, et al. Corrosion inhibition and adsorption properties of some heterocyclic derivatives on C-steel surface in HCl [J]. J. Bio. Tribo-Corros., 2020, 6: 51
29 Kousar K, Ljungdahl T, Wetzel A, et al. An exemplar imidazoline surfactant for corrosion inhibitor studies: synthesis, characterization, and physicochemical properties [J]. J. Surfactants Deterg., 2020, 23: 225
doi: 10.1002/jsde.12363
30 Umoren S A, Solomon M M, Obot I B, et al. A critical review on the recent studies on plant biomaterials as corrosion inhibitors for industrial metals [J]. J. Ind. Eng. Chem., 2019, 76: 91
31 Dehghani A, Bahlakeh G, Ramezanzadeh B. A detailed electrochemical/theoretical exploration of the aqueous Chinese gooseberry fruit shell extract as a green and cheap corrosion inhibitor for mild steel in acidic solution [J]. J. Mol. Liquids, 2019, 282: 366
doi: 10.1016/j.molliq.2019.03.011
32 Ansari K R, Chauhan D S, Quraishi M A, et al. Bis(2-aminoethyl)amine-modified graphene oxide nanoemulsion for carbon steel protection in 15% HCl: Effect of temperature and synergism with iodide ions [J]. J. Colloid Interface Sci., 2020, 564: 124
doi: 10.1016/j.jcis.2019.12.125
33 Zhang Q, Guo L, Huang Y, et al. Influence of an imidazole-based ionic liquid as electrolyte additive on the performance of alkaline Al-air battery [J]. J. Power Sources, 2023, 564: 232901
34 Zhu M Y, He Z Y, Guo L, et al. Corrosion inhibition of eco-friendly nitrogen-doped carbon dots for carbon steel in acidic media: Performance and mechanism investigation [J]. J. Mol. Liquids, 2021, 342: 117583
doi: 10.1016/j.molliq.2021.117583
35 Zhu M Y, Guo L, He Z Y, et al. Insights into the newly synthesized N-doped carbon dots for Q235 steel corrosion retardation in acidizing media: A detailed multidimensional study [J]. J. Colloid Interface Sci., 2022, 608: 2039
doi: 10.1016/j.jcis.2021.10.160
36 Qiang Y J, Zhang S T, Wang L P. Understanding the adsorption and anticorrosive mechanism of DNA inhibitor for copper in sulfuric acid [J]. Appl. Surf. Sci., 2019, 492: 228
37 Qiang Y J, Guo L, Li H, et al. Fabrication of environmentally friendly Losartan potassium film for corrosion inhibition of mild steel in HCl medium [J]. Chem. Eng. J., 2021, 406: 126863
38 Qiang Y J, Zhang S T, Zhao H C, et al. Enhanced anticorrosion performance of copper by novel N-doped carbon dots [J]. Corros. Sci., 2019, 161: 108193
39 Qiang Y J, Li H, Lan X J. Self-assembling anchored film basing on two tetrazole derivatives for application to protect copper in sulfuric acid environment [J]. J. Mater. Sci. Technol., 2020, 52: 63
doi: 10.1016/j.jmst.2020.04.005
40 Li X H, Xu X, Lei R, et al. Synergistic inhibition effect of walnut green husk extract complex inhibitors on steel in phosphoric acid [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 358
李向红, 徐 昕, 雷 然 等. 磷酸中核桃青皮复配缓蚀剂对冷轧钢的缓蚀协同效应 [J]. 中国腐蚀与防护学报, 2022, 42: 358
doi: 10.11902/1005.4537.2021.160
41 Wang F P, Kang W L, Jing H M. Principles, Methods and Applications of Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press, 2008
王凤平, 康万利, 敬和民. 腐蚀电化学原理、方法及应用 [M]. 北京: 化学工业出版社, 2008
42 Lei R, Shi C J, Li X H. Corrosion inhibition of aluminum in HCl solution by flos sophorae immaturus extract [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 939
雷 然, 石成杰, 李向红. 槐米提取物对Al在HCl溶液中的缓蚀作用 [J]. 中国腐蚀与防护学报, 2022, 42: 939
43 Tantawy A H, Soliman K A, Abd El-Lateef H M. Novel synthesized cationic surfactants based on natural piper nigrum as sustainable-green inhibitors for steel pipeline corrosion in CO2-3.5%NaCl: DFT, Monte Carlo simulations and experimental approaches [J]. J. Cleaner Prod., 2020, 250: 119510
doi: 10.1016/j.jclepro.2019.119510
44 Deng Z H, Lei R, Zhang Z Y, et al. Corrosion inhibition of vetiver extract on steel in hydrochloric acid environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 173
邓志华, 雷 然, 张智勇 等. 香根草提取物对冷轧钢在盐酸溶液中的缓蚀作用 [J]. 中国腐蚀与防护学报, 2023, 43: 173
doi: 10.11902/1005.4537.2022.065
45 Douche D, Elmsellem H, Anouar E H, et al. Anti-corrosion performance of 8-hydroxyquinoline derivatives for mild steel in acidic medium: Gravimetric, electrochemical, DFT and molecular dynamics simulation investigations [J]. J. Mol. Liquids, 2020, 308: 113042
46 Hamani H, Daoud D, Benabid S, et al. Electrochemical, density functional theory (DFT) and molecular dynamic (MD) simulations studies of synthesized three news Schiff bases as corrosion inhibitors on mild steel in the acidic environment [J]. J. Indian Chem. Soc., 2022, 99: 100492
doi: 10.1016/j.jics.2022.100492
47 Eze S I, Ibeji C U, Akpan E D, et al. Corrosion performance of Schiff base derived from 2,5-dimethoxybenzyaldehyde: X-ray structure, experimental and DFT studies [J]. Chem. Papers, 2022, 76: 5187
doi: 10.1007/s11696-022-02244-7
48 Shi X, Jiang Y Y, Wang H B, et al. Density functional theory analysis on four pyrazine corrosion inhibitors and their adsorption behavior on Cu(111) surface [J]. CIESC J., 2017, 68: 3211
石 鑫, 姜云瑛, 王洪博 等. 4种吡嗪类缓蚀剂及其在Cu(111)面吸附行为的密度泛函理论研究 [J]. 化工学报, 2017, 68: 3211
49 Chen H B, Li Y C, Zhang X F, et al. Quantum chemistry calculation of corrosion inhibition performance of oleic-acid imidazoline corrosion inhibitors [J]. Corros. Prot., 2014, 35: 1234
陈怀兵, 李养池, 张新发 等. 油酸基咪唑啉缓蚀剂缓蚀性能和量子化学计算 [J]. 腐蚀与防护, 2014, 35: 1234
50 Zheng T Y, Wang L, Liu J Y, et al. Corrosion inhibition of ionic liquids on the surface of Q235 steel in methanol/sulfuric acid medium [J]. CIESC J., 2020, 71: 2230
doi: 10.11949/0438-1157.20191372
郑天宇, 王 璐, 刘金彦 等. 离子液体在甲醇/硫酸介质中对Q235钢表面的缓蚀性能 [J]. 化工学报, 2020, 71: 2230
doi: 10.11949/0438-1157.20191372
51 Hsissou R, Benhiba F, Abbout S, et al. Trifunctional epoxy polymer as corrosion inhibition material for carbon steel in 1.0 M HCl: MD simulations, DFT and complexation computations [J]. Inorg. Chem. Commun., 2020, 115: 107858
52 Padash R, Sajadi G S, Jafari A H, et al. Corrosion control of aluminum in the solutions of NaCl, HCl and NaOH using 2, 6-dimethylpyridine inhibitor: Experimental and DFT insights [J]. Mater. Chem. Phys., 2020, 244: 122681
doi: 10.1016/j.matchemphys.2020.122681
[1] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[2] PAN Dailong, SI Xiaodong, LV Jinhong. Effect of Flow Velocity on Flow Accelerated Corrosion Rate of Carbon Steel Elbow[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
[3] DONG Hongmei, LI Baoyi, RAN Boyuan, WANG Qi, NIU Yulan, DING Lifeng, QIANG Yujie. Corrosion Inhibition Mechanism of the Eco-friendly Corrosion Inhibitor Linagliptin on Copper in Sulfuric Acid[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[4] XIA Xiaojian, WAN Xinyuan, CHEN Yunxiang, HAN Jiceng, CHEN Yiyang, YAN Kanghua, LIN Deyuan, CHEN Tianpeng, ZUO Xiaomei, SUN Baozhuang, CHENG Xuequn. Effect of Heat Treatments on Corrosion Behavior of 3Cr Low Carbon Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[5] HUANG Jiazhen, HUANG Tao, YANG Lijing, JI Dengping, DING He, WEI Yi, SONG Zhenlun. Electrochemical Properties and Offshore Corrosion Behavior of SAF 2304 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[6] ZHAO Guoxian, WANG Yingchao, ZHANG Siqi, SONG Yang. Influence Mechanism of H2S/CO2-charging on Corrosion of J55 Steel in an Artificial Solution[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
[7] FENG Li, ZHANG Shengtao, ZHENG Siyuan, HU Zhiyong, ZHU Hailin, MA Xuemei. Effect of Halogen Anions on Corrosion Inhibition of Ionic Liquids[J]. 中国腐蚀与防护学报, 2022, 42(5): 791-797.
[8] ZHANG Haibing, ZHANG Yihan, MA Li, XING Shaohua, DUAN Tigang, YAN Yonggui. Electrochemical Performance of Sacrificial Anodes in Alternating Depth and Shallowness of Seawater Environments[J]. 中国腐蚀与防护学报, 2022, 42(5): 867-872.
[9] WANG Zhongqi, XU Chunxiang, YANG Lijing, TIAN Linhai, HUANG Tao, SHI Yixuan, YANG Wenfu. Microstructure and Corrosion Resistance of Medical Degradable Mg-2Y-1Zn-xZr Alloy[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[10] DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[11] WANG Laibin, LIU Xiahe, WANG Mei, GAO Junjie. Research Status and Progress on Growth Kinetics of Trivalent Chromium-based Conversion Film[J]. 中国腐蚀与防护学报, 2021, 41(5): 571-578.
[12] YI Guanghui, ZHENG Dajiang, SONG Guangling. Influence of Acid Pickling on Morphology, Optical Parameters and Corrosion Resistance of 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
[13] RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of Temperature on Corrosion Behavior of 14Cr12Ni3-WMoV Stainless Steel in 0.02 mol/L NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[14] SUN Dan, LI Wei, WEI Runzhi, WANG Sheng, HAN Jiaxing, LIU Zheng. Theoretical Evaluation of 2-aminofluorenic Double Schiff Base Corrosion Inhibitor Based on Quantum Chemistry[J]. 中国腐蚀与防护学报, 2021, 41(3): 405-410.
[15] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
No Suggested Reading articles found!