Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (4): 346-352    DOI: 10.11902/1005.4537.2014.044
Current Issue | Archive | Adv Search |
Microbiologically Induced Corrosion of X80 Pipeline Steel in an Acid Soil Solution: (I) Electrochemical Analysis
WU Tangqing1, DING Wancheng2, ZENG Dechun3, XU Changfeng3, YAN Maocheng1, XU Jin1, YU Changkun1, SUN Cheng1
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; 2. Xinjiang Oilfield Branch, China National Petroleum Corporation, Karamay 834000, China; 3. Oil-Gas Storage and Transportation Company, Xinjiang Oilfield Branch, Karamay 834002, China
Download:  HTML  PDF(762KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Electrochemical characteristics of sulphate-reducing bacteria (SRB) induced corrosion of X80 pipeline steel were studied in an acid soil solution by mean of microbiological test methods and electrochemical techniques. The results showed that there exist a period for the newly-inoculated bacteria to be acclimatized to the new environment, during which death of large quantity of bacteria did occur; the open circuit potential of the steel is always lower in the inoculated soil solution than that in the sterile environment; SRB inhibits the corrosion process of the steel in the early stage and accelerates the corrosion process in the later stage during the experiment; while the activity of SRB alters the dielectric of the metal/solution interface, which is responsible for the increase of the corrosion rate of the pipeline steel in the later stage of the experiment.
Key words:  sulphate-reducing bacteria      X80 pipeline steel      acid soil solution      electrochemical impedance spectroscopy     
Received:  10 April 2014     
ZTFLH:  TG172.4  

Cite this article: 

WU Tangqing, DING Wancheng, ZENG Dechun, XU Changfeng, YAN Maocheng, XU Jin, YU Changkun, SUN Cheng. Microbiologically Induced Corrosion of X80 Pipeline Steel in an Acid Soil Solution: (I) Electrochemical Analysis. Journal of Chinese Society for Corrosion and protection, 2014, 34(4): 346-352.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.044     OR     https://www.jcscp.org/EN/Y2014/V34/I4/346

[1] Jin T Y, Liu Z Y, Cheng Y F. Effect of non-metallic inclusions on hydrogen-induced cracking of API5L X100 steel [J]. Int. J. Hydrogen Energy., 2010, 35(15): 8014-8021
[2] Wang W. Study on Microstructure and Strengthening&Toughening Mechanism of High Performance Pipeline Steels [D]. Beijing: Graduate School of Chinese Academy of Sciences, 2009 (王伟. 高性能管线钢的组织及强韧化机理研究 [D]. 北京: 中国科学院研究生院, 2009)
[3] Beech I B, Gaylarde C C. Recent advances in the study of biocorrosion [J]. Rev. Microbiol., 1999, 30(3): 177-190
[4] Duan D X, Chen X G, Lin C G. 907A steel corrosion in artificial sulfate reducing bacteria biofilm [J]. J. Chin. Soc. Corros. Prot., 2011, 31(6): 453-456 (段东霞, 陈西广, 蔺存国. 硫酸盐还原菌模拟生物膜对907A钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2011, 31(6): 453-456)
[5] Little B J, Mansfeld F B, Arps P J, et al. In: Bard A J, Stratmam M, Frankel G S (Eds.). Encyclopedia of Electrochemistry [M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2007: 662-685
[6] Yang J X, Zhao P, Sun C, et al. Influence of sulphate reducing bacteria on crevice corrosion behavior of Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2012, 32(1): 54-58 (杨佳星, 赵平, 孙成等. 硫酸盐还原菌对Q235钢缝隙腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2012, 32(1): 54-58)
[7] Liu H F, Liu T. Groth characteristics of thermophile sulfate-reducing bacteria and its effect on carbon steel [J]. J. Chin. Soc. Corros. Prot., 2009, 29(2): 93-98 (刘宏芳, 刘涛. 嗜热硫酸盐还原菌生长特征及其对碳钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2009, 29(2): 93-98)
[8] Borenstein S W. Microbiologically influenced corrosion of austenitic stainless steel weldments [J]. Mater. Perform., 1991, 30(1): 52-54
[9] Javaherdashti R. A review of some characteristics of MIC caused by sulphate-reducing bacteria: past, present and future [J]. Anti-Corros. Method. M., 1999, 46(3): 173-180
[10] Li X M, Jin Z, Liu W Z, et al. Effects of urea on corrosion behavior of Q235 steel in soil [J]. J. Chin. Soc. Corros. Prot., 2013, 33(3): 216-220 (李喜明, 金哲, 刘五铸等. 尿素对土壤中Q235钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2013, 33(3): 216-220)
[11] Li X M, Zhang C Y, Zhu H, et al. Effect of erea on microbial corrosion behavior of Q235 steel in soil [J]. J. Chin. Soc. Corros. Prot., 2012, 32(5): 397-402 (李喜明, 张春颜, 朱辉等. 土壤中残余尿素对Q235钢微生物腐蚀的影响 [J]. 中国腐蚀与防护学报, 2012, 32(5): 397-402)
[12] AlAbbas F M, Williamson C, Bhola S M, et al. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high- strength steel (API-5L X80) [J]. Int. Biodeterior. Biodegrad., 2013,
[13] von Wolzogen Kuhr C A H. Unity of Anaerobic and Aerobic Iron Corrosion Process in the Soil [J]. Corrosion, 1961, 17(6): 293t-299t
[14] King R A, Miller J D A. Corrosion by sulphate-reducing bacteria [J]. Nature, 1971, 233: 491-492
[15] Iverson W P. Corrosion of iron and formation of iron phosphide by desulfovibrio desulfuricans [J]. Nature, 1968, 217: 1265-1268
[16] Duan J, Wu S, Zhang X, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater [J]. Electrochim. Acta., 2008, 54(1): 22-28
[17] Sun C, Xu J, Wang F. Interaction of Sulfate-Reducing Bacteria and Carbon Steel Q235 in Biofilm [J]. Ind. Eng. Chem. Res., 2011, 50: 12797-12806
[18] Cheng S, Tian J, Chen S, et al. Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: (I) Corrosion behavior [J]. Mater. Sci. Eng., 2009, C29(3): 751-755
[19] Dunne W M. Bacterial adhesion: Seen any good biofilms Lately? [J]. Clin. Microbiol. Rev., 2002, 15(2): 155-166
[20] Zuo R, Kus E, Mansfeld F, et al. The importance of live biofilms in corrosion protection [J]. Corros. Sci., 2005, 47(2): 279-287
[21] Werner S E, Johnson C A, Laycock N J, et al. Pitting of type 304 stainless steel in the presence of a biofilm containing sulphate reducing bacteria [J]. Corros. Sci., 1998, 40(2/3): 465-480
[22] Gonzalez J E G, Santana F J H, Mirza-Rosca J C. Effect of bacterial biofilm on 316 SS corrosion in natural seawater by EIS [J]. Corros. Sci., 1998, 40(12): 2141-2154
[23] Yu L, Duan J, Du X, et al. Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry [J]. Electrochem. Commun.,
[24] Cao C N. Principles of Electrochemistry of Corrosion [M]. Beijing: Chemical Industry Press, 2008 (曹楚南. 腐蚀电化学 [M]. 北京: 化学工业出版社, 2008)
[25] Wu T Q,Yang P, Zhang M D, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (II) corrosion morphology and corrosion product analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 353-358 (吴堂清, 杨圃, 张明德等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (II) 腐蚀形貌和产物分析 [J]. 中国腐蚀与防护学报, 2014, 34: 353-358)
[1] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[3] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[4] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[5] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[6] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[7] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[8] Sanxi DENG, Xiaoyu YAN, Ke CHAI, Jinyi WU, Hongwei SHI. Effect of Pseudomonas sp. on Decomposition and Anticorrosion Behavior of Polysiloxane Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[9] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[10] Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[11] Libao YU, Maocheng YAN, Binbin WANG, Yun SHU, Jin XU, Cheng SUN. Microbial Corrosion of Q235 Steel in Acidic Red Soil Environment[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.
[12] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[13] Fandi MENG, Li LIU, Ying LI, Fuhui WANG. Embedded Microelectrode for In situ Electrochemical Impedance Spectroscopy Measurement of Organic Coating Under Marine Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[14] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[15] Jia WANG, Mengyang JIA, Zhaohui YANG, Bing HAN. On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
No Suggested Reading articles found!