Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (5): 433-438    DOI: 10.11902/1005.4537.2013.195
Current Issue | Archive | Adv Search |
Sliding Wear-corrosion Performance of AISI 316 Stainless Steel Against Alumina in Artificial Seawater
CHEN Jun1,2(), LI Quanan1, ZHANG Qing1, WANG Jianzhang2, YAN Fengyuan2
1. School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
2. State Key laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Download:  HTML  PDF(2237KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The sliding wear-corrosion of AISI 316 stainless steel against alumina in artificial seawater was investigated by means of weight loss test, electrochemical measurement and microstructure examination. The result shows that in the presence of wear the corrosion rate of AISI 316 stainless steel is obviously enhanced; the weight loss of the steel caused by corrosion-wear is higher than that under cathodic protection; the weight loss due to merely mechanical wear amounts to ca 76%~88% of the total weight loss of the wear-corrosion, which shows that the pure mechanical wear is the main factor in corrosion-wear process; however it may not be ignored that the weight loss corresponding to the synergistic effect between corrosion and wear amounts to ca 12%~24% of the total weight loss of the wear-corrosion.

Key words:  AISI 316 stainless steel      tribocorrosion      synergistic interaction      seawater     
ZTFLH:  TH11.3  

Cite this article: 

CHEN Jun, LI Quanan, ZHANG Qing, WANG Jianzhang, YAN Fengyuan. Sliding Wear-corrosion Performance of AISI 316 Stainless Steel Against Alumina in Artificial Seawater. Journal of Chinese Society for Corrosion and protection, 2014, 34(5): 433-438.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.195     OR     https://www.jcscp.org/EN/Y2014/V34/I5/433

Fig.1  Schematic diagram of the corrosion-wear apparatus
Fig.2  Variations of friction coefficient and open circuit potential in the conditions at 200 r/min under different loads (a) and under 100 N at different rotate speeds (b)
Fig.3  Polarization curves under corrosion-only and tribocorrosion conditions
Condition Ecorr / V icorr / mAcm-2
Static corrosion -0.63 10.89×10-3
50 N, 100 r/min -0.67 1.65
50 N, 200 r/min -0.70 1.79
100 N, 100 r/min -0.69 1.71
100 N, 200 r/min -0.72 1.92
Table 1  icorr and Ecorr of 316 stainless steel under static corrosion and sliding conditions
Fig.4  Proportion of different components in corrosion-wear process: (a) 50 N, 100 r/min, (b) 100 N, 100 r/min, (c) 50 N, 200 r/min, (d) 100 N, 200 r/min
Condition VT
mm3
Vm
mm3
Vmc
mm3
Vcm
mm3
?V
mm3
?V / V Vm / V
50 N, 100 r/min 33.3 25.4 1.46 6.45 7.91 24% 76%
50 N, 200 r/min 72.4 58.2 1.58 12.6 14.2 20% 80%
100 N, 100 r/min 89.3 75.8 1.5 12 13.5 15% 85%
100 N, 200 r/min 185.4 163.3 1.7 20.4 22.1 12% 88%
Table 2  Volume losses induced by the different factors in corrosion-wear process
Fig.5  SEM micrographs of the worn surface of AISI 316 stainless steel: (a) ×100, (b) ×500
[1] Stemp M, Mischler S, Landolt D. The effect of contact configuration on the tribocorrosion of stainless steel in reciprocating sliding under potentiostatic control[J]. Corros. Sci., 2003, 45(3): 625-640
[2] Henry P, Takadoum J, Berçot P. Tribocorrosion of 316L stainless steel and TA6V4 alloy in H2SO4 media[J]. Corros. Sci., 2009, 51(6): 1308-1314
[3] Diomidis N, Celis J P, Ponthiaux P, et al. Tribocorrosion of stainless steel in sulfuric acid: Identification of corrosion-wear components and effect of contact area[J]. Wear, 2010, 269(1/2): 93-103
[4] Bello J O, Wood R J K, Wharton J A. Synergistic effects of micro-abrasion-corrosion of UNSS30403, S31603 and S32760 stainless steels[J]. Wear, 2007, 263: 149-159
[5] Li Y, Qu L, Wang F. The electrochemical corrosion behavior of TiN and (Ti, Al) N coatings in acid and salt solution[J]. Corros. Sci., 2003, 45(7): 1367-1381
[6] Chen J, Yan F. Tribocorrosion behaviors of Ti-6Al-4V and Monel K500 alloys sliding against 316 stainless steel in artificial seawater[J]. Trans. Nonferrous Met. Soc. China, 2012, 22(6): 1356-1365
[7] Henry P, Takadoum J, Bercot P. Depassivation of some metals by sliding friction[J]. Corros. Sci., 2011, 53(1): 320-328
[8] Sun Y, Rana V. Tribocorrosion behaviour of AISI 304 stainless steel in 0.5 M NaCl solution[J]. Mater. Chem. Phys., 2011, 129(1/2): 138-147
[9] Iwabuchi A, Lee J W, Uchidate M. Synergistic effect of fretting wear and sliding wear of Co-alloy and Ti-alloy in Hanks' solution[J]. Wear, 2007, 263(1-6): 492-500
[10] Iwabuchi A, Sonoda T, Yashiro H, et al. Application of potential pulse method to the corrosion behavior of the fresh surface formed by scratching and sliding in corrosive wear[J]. Wear, 1999, 225-229<br/>(Part 1): 181-189
[11] Watson S W, Friedersdorf F J, Madsen B W, et al. Methods of measuring wear-corrosion synergism[J]. Wear, 1995, 181-183<br/>(Part 2):476-484
[12] Chen J, Wang J Z, Chen B B, et al. Tribocorrosion behaviors of inconel 625 alloy sliding against 316 steel in seawater[J]. Tribol. Trans., 2011, 54(4): 514-522
[13] Salasi M, Stachowiak G B, Stachowiak G W. New experimental rig to investigate abrasive-corrosive characteristics of metals in aqueous media[J]. Tribol. Lett., 2010, 40(1): 71-84
[14] Shintani D, Ishida T, Izumi H, et al. XPS studies on passive film formed on stainless steel in a high-temperature and high-pressure methanol solution containing chloride ions[J]. Corros. Sci., 2008, 50(10): 2840-2845
[15] Landolt D, Mischler S, Stemp M. Electrochemical methods in tribocorrosion: A critical appraisal[J]. Electrochim. Acta, 2001, 46(24/25): 3913-3929
[16] Lu X C, Li S Z, Jiang X X, et al. Effect of polarization potential on corrosive wear and friction behavior of a duplex stainless steel in sulfuric acid solution[J]. Tribology, 1996, 16(2): 105-111
(路新春, 李诗卓, 姜晓霞等. 外加极化电位对双相不锈钢在硫酸介质中腐蚀磨损行为及摩擦性能的影响[J]. 摩擦学学报, 1996, 16(2): 105-111)
[17] Bi H Y, Li S Z, Jiang X X. The Effect of deformation streng-thening on wear resistance of stainless steel in dry sliding and corrosive environment[J]. Tribology, 1998, 18(4): 327-331
(毕红运, 李诗卓, 姜晓霞. 不锈钢腐蚀磨损过程中形变强化能力的研究[J]. 摩擦学学报, 1998, 18(4): 327-331)
[18] Yang Y S, Qu J X, Shao H S. The interaction of corrosive wear of two metallic materials[J]. Tribology, 1996, 16(1): 47-53
(杨院生, 曲敬信, 邵荷生. 两种金属材料腐蚀磨损的交互作用[J]. 摩擦学学报, 1996, 16(1): 47-53)
[19] Shipilov S A. Mechanisms for corrosion fatigue carck propagation[J]. J. Chin. Soc. Corros. Prot., 2004, 24: 321-333
(Shipilov S A. 腐蚀疲劳裂纹扩展的机理[J]. 中国腐蚀与防护学报, 2004, 24: 321-333)
[1] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[2] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[3] DING Guoqing,LI Xiangyang,ZHANG Bo,YANG Zhaohui,HUANG Guiqiao,YANG Haiyang,LIU Kaiji. Variation of Free Corrosion Potential of Several Metallic Materials in Natural Seawater[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[4] YU Renqiang,HE Jianjun,LI Wei,REN Yanjie,YANG Wang. Erosive Wear of Cr30A High Chromium Cast Iron in a Simulated Circulating Pump Operation Condition with Slurry Related to Wet DesulfurationProcess in Thermal Power Plant[J]. 中国腐蚀与防护学报, 2019, 39(4): 353-358.
[5] Shaokun YAN,Dajiang ZHENG,Jiang WEI,Guangling SONG,Lian ZHOU. Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[6] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[7] Dan YANG,Dinglin LI,Yanliang HUANG,Pilong HUA,Xia ZHAO,Peng PENG,Xiutong WANG. Research Progress on Corrosion Issue and Metallic Material Selection Related with Seawater Pumped Storage Power Plant[J]. 中国腐蚀与防护学报, 2019, 39(1): 1-8.
[8] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[9] Yan SUN, Jiajia WU, Dun ZHANG, Shiqiang CHEN. Investigation of Microorganisms in Corrosion Product Scales on Q235 Carbon Steel Exposed to Tidal- and Full Immersion Zone at Qindao- and Sanya-sea Waters[J]. 中国腐蚀与防护学报, 2018, 38(4): 333-342.
[10] Zhenhua WANG, Yang BAI, Xiao MA, Shaohua XING. Numerical Simulation of Galvanic Corrosion for Couple of Ti-alloy with Cu-alloy in Seawaters[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[11] Tianyi ZHANG,Junsheng WU,Hailong GUO,Xiaogang LI. Influence of HSO3- on Passive Film Composition and Corrosion Resistance of 2205 Duplex Stainless Steelin Simulated Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[12] Yongqi TAO,Gang LIU,Yesheng LI,Zhixiang ZENG. Corrosion Wear Properties of 2024 Al-Alloy in Artificial Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 587-594.
[13] Zihao WANG,Yunhua HUANG,Jia LI,Lang YANG,Donghan XIE. Effect of Nb on Corrosion Behavior of Simulated Weld HAZs of X80 Pipeline Steel in Simulated Seawater Environments Correxxxxsponding to Shallow Sea and Deep Sea[J]. 中国腐蚀与防护学报, 2016, 36(6): 604-610.
[14] Jihui WANG,Huajie YAN,Wenbin HU. Preparation and Inhibition Behavior of Molybdate Intercalated ZnAlCe-hydrotalcite[J]. 中国腐蚀与防护学报, 2016, 36(6): 637-644.
[15] Jianchun ZHANG,Jingyang JIANG,Yang LI,Jinjie SHI,Longfei ZUO,Danqian WANG,Han MA. Passive Films Formed on Seawater Corrosion Resistant Rebar 00Cr10MoV in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
No Suggested Reading articles found!